Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5764–5766 | Cite as

Phosphazene-based polymers as atomic oxygen resistant materials

  • D. Devapal
  • S. Packirisamy
  • C. P. Reghunadhan Nair
  • K. N. Ninan
Letter

Spacecraft materials in low earth orbit environment (LEO; 200–700 km) are subjected to the combined effects of thermal cycling, far ultraviolet radiation, hard vacuum, micrometeoroid and debris impact, charged particle bombardment, spacecraft charging and atomic oxygen (AO). Of these the dominant chemical constituent of LEO environment is AO formed by the photodissociation of molecular oxygen [1, 2]. AO causes erosion of polyimide films, advanced composites and engineering thermoplastic materials which are extensively used for the construction of satellites and space stations placed in LEO and hence, these materials need protection. Metal oxides, which have negligible erosion rates, can be used as AO resistant protective coatings for materials that are susceptible to AO attack. However, these coatings lack flexibility and are susceptible to pin hole defects and easily crack on thermal cycling due to thermal expansion mismatch of the coating and the substrate [1, 2]. To overcome the...

Keywords

Atomic Oxygen Phosphazene Bismaleimide Vinylic Polymer High Phosphorus Content 

Notes

Acknowledgements

The authors thank the authorities of VSSC for granting permission to publish this work. One of the authors (D.D.) is thankful to CSIR, New Delhi for a senior research fellowship. The authors acknowledge Professor V. Chandrasekhar, IIT, Kanpur for supplying the vinylic polymer, VCP-1.

References

  1. 1.
    Purvis CK (1988) NASA/SDIO space environmental effects on materials workshop. Hampton, VA, USA, June–July 1988. NASA Conference Publication 3035, Part I, p 179Google Scholar
  2. 2.
    Mcclure D (1988) NASA contractors report 4158, p 28Google Scholar
  3. 3.
    Packirisamy S, Schwam D, Litt MH (1995) J Mater Sci 30:308CrossRefGoogle Scholar
  4. 4.
    Packirisamy S (1996) Prog Polym Sci 21:707CrossRefGoogle Scholar
  5. 5.
    Kulig J, Schwam D, Litt MH (1990) In: Sheats J (ed) Inorganic and metal containing polymeric materials. Plenum Press, New York, p 225Google Scholar
  6. 6.
    Devapal D, Packirisamy S, Korulla RM, Ninan KN (2004) J Appl Polym Sci 94:2368CrossRefGoogle Scholar
  7. 7.
    Smith JG Jr, Connell JW, Hergenrother PM (1994) Polymer 35:2834CrossRefGoogle Scholar
  8. 8.
    Connell JW, Smith JG Jr, Hergenrother PM (1995) Polymer 36:5CrossRefGoogle Scholar
  9. 9.
    Connell JW, Smith JG Jr, Hedrick JL (1995) Polymer 36:13CrossRefGoogle Scholar
  10. 10.
    Connell JW, Smith JG Jr, Kalil CG, siochi EJ (1996) In: Proc 41st int SAMPE symp, p 1747Google Scholar
  11. 11.
    Connell JW, Smith JG Jr, Hergenrother PM (1993) J Fire Sci 11:137CrossRefGoogle Scholar
  12. 12.
    Nair CPR, Sunitha M, Ninan KN (2002) Polym Polym Comp 10:457Google Scholar
  13. 13.
    Nair CPR, Ninan KN (2004) Polym Polym Comp12:55Google Scholar
  14. 14.
    Inoue K, Takagi M, Nakano M, Nakamura H, Tanigaki T (1988) Macromol Chem Rapid Commun 9:345CrossRefGoogle Scholar
  15. 15.
    Inoue K, Kaneyuki S, Tanigaki T (1989) Macromolecules 22:1530CrossRefGoogle Scholar
  16. 16.
    Dever JA (1994) In: Noor AK, Venneri SL (eds) Adv metal metal-matrix and poly matrix comp, vol 2. p 422Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • D. Devapal
    • 1
  • S. Packirisamy
    • 1
  • C. P. Reghunadhan Nair
    • 1
  • K. N. Ninan
    • 1
  1. 1.Polymers and Special Chemicals Division, Propellants and Special Chemicals Group, PCM EntityVikram Sarabhai Space CentreThiruvananthapuram India

Personalised recommendations