Journal of Materials Science

, Volume 41, Issue 17, pp 5739–5742 | Cite as

Fractal geometry of fracture surfaces of a duplex stainless steel

  • O. A. HildersEmail author
  • M. Ramos
  • N. D. Peña
  • L. Sàenz

It is well-known that the micromechanisms of fracture affect the fracture resistance, leaving characteristic information to be collected from the fracture surface. Such qualitative information may be useful in failure interpretation and prevention. On the other hand, since fracture surfaces are irregular microstructures, a prediction of mechanical properties cannot be made by quantitative measurements of fracture features because of the difficulty in arriving at a numerical characterization of the structure. Nevertheless, since Mandelbrot [1] classified the fracture surfaces of metals as approximately fractal, quantitative characterization of their morphological features has rapidly started to be applied in research through a parameter called fractal dimension D, a descriptor of the surface tortuosity with which material properties can be correlated [2, 3, 4, 5, 6, 7, 8]. Most investigators have found that the fracture profiles does have a fractal character [9, 10, 11, 12] and can be...


Fracture Surface Impact Toughness Duplex Stainless Steel Charpy Impact Test Dimple Size 


  1. 1.
    Mandelbrot BB (1982) The fractal geometry of nature. Freeman, New York, p 109Google Scholar
  2. 2.
    Milman VY, Stelmashenko NA, Blumenfield R (1994) Prog Mater Sci 38:425CrossRefGoogle Scholar
  3. 3.
    Li XW, Tian JF, Han NL, Kang Y, Wang ZG (1996) Mater Lett 29:235CrossRefGoogle Scholar
  4. 4.
    Hilders OA, Sáenz L, Ramos M, Peña ND (1999) J Mater Eng Perf 8:87CrossRefGoogle Scholar
  5. 5.
    Gang JX (1992) J Mater Sci Lett 11:1379CrossRefGoogle Scholar
  6. 6.
    Tanaka M, Kato R, Kayama A (2002) J Mater Sci 37:3945CrossRefGoogle Scholar
  7. 7.
    Hilders OA, Pilo D (1997) Mater Charact 38:121CrossRefGoogle Scholar
  8. 8.
    Mecholsky JJ, West JK, Passoja DE (2002) Phil Mag A 82:3163CrossRefGoogle Scholar
  9. 9.
    Mandelbrot BB, Passoja DE, Paullay AJ (1984) Nature 308:721CrossRefGoogle Scholar
  10. 10.
    Xie H, Sanderson DJ (1995) Eng Fract Mech 50:529CrossRefGoogle Scholar
  11. 11.
    Hilders OA, Peña ND, Ramos M, Sáenz L, Berrío L, Caballero RA, Quintero A (2002) Mater Sci Forum 396–402:1411CrossRefGoogle Scholar
  12. 12.
    Stach S, Roskosz S, Cybo J, Cwajna J (2003) Mater Charact 51:87CrossRefGoogle Scholar
  13. 13.
    Rajanna K, Pathiraj B, Kolster BH (1997) J Mater Eng Perf 6:35CrossRefGoogle Scholar
  14. 14.
    Horvath W, Tabernig B, Werner E, Uggowitzer P (1997). Acta Mater 45:1645CrossRefGoogle Scholar
  15. 15.
    Schlapfer HW, Weber J (1986) Mater Tech 2:60Google Scholar
  16. 16.
    ASTM Book of Standards E 23–86 (1989) vol. 3.01, ASTM, Philadelphia, p 198Google Scholar
  17. 17.
    Hilders OA, Sáenz L, Peña N, Ramos M, Quintero A, Caballero RA, Berrío L (2000) Microsc Microan 6(Supp. 2):766Google Scholar
  18. 18.
    Thompson AW (1983) Acta Metall 31:1517CrossRefGoogle Scholar
  19. 19.
    Mu ZQ, Lung CW, Kang Y, Long QY (1993) Phys Rev B 48:7679CrossRefGoogle Scholar
  20. 20.
    Nyström M, Karlsson B, Wasén J (1990) In: Nordberg H, Fernheden K (eds) Nordic symposium on mechanical properties of stainless steels, Sigtuna, Sweden, October, Avesta Research Foundation, Stockholm, p 70Google Scholar
  21. 21.
    Hsiung JC, Chou YT (1998) J Mater Sci 33:2949CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • O. A. Hilders
    • 1
    Email author
  • M. Ramos
    • 1
  • N. D. Peña
    • 2
  • L. Sàenz
    • 3
  1. 1.School of Metallurgical Engineering and Materials ScienceCentral University of VenezuelaCaracasVenezuela
  2. 2.Department of Materials Technology, Federico Rivero PalaciosUniversity of Technology InstituteCaracasVenezuela
  3. 3.Department of Materials and Fabrication ProcessesUniversity of CaraboboValenciaVenezuela

Personalised recommendations