Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5718–5722 | Cite as

A technique for characterizing spatial distributions of particles based on Nth-nearest neighbor statistics

  • Jeremy W. Leggoe
Letter

Spatial heterogeneity in secondary phase particle distributions can strongly influence failure processes. In developing models that capture the stochastic nature of failure, the fact that real particle distributions rarely exhibit the “true” randomness of an equilibrium ensemble (as may be generated computationally using a Metropolis algorithm [1]) presents a challenge. In modeling investigations, some form of “random” state has typically been assumed. Representative volume element models are often employed in which particles are added via Random Sequential Addition (RSA) [2, 3, 4, 5]. Microstructures that deviate from equilibrium have been modeled by distributing particles within randomly dispersed spherical clusters [6], or by adopting a cellular automata approach [7, 8, 9]; in each case, the model microstructures were arbitrarily constructed.

Enhancing the fidelity of multiphase material models requires the construction of models that recreate the true spatial statistics of real...

Keywords

Point Process Particle Distribution Deviation Ratio Random Sequential Addition Particulate Reinforce Metal Matrix Composite 

References

  1. 1.
    Torquato S (2002) Random heterogeneous materials – microstructure and macroscopic properties. Springer-Verlag, New YorkCrossRefGoogle Scholar
  2. 2.
    Brockenbrough JT, Suresh S, Wienecke HA (1991) Acta metal Mater 39:735CrossRefGoogle Scholar
  3. 3.
    Shen H, Lissenden CJ (2002) Mater Sci Eng A338:2355Google Scholar
  4. 4.
    Gonzalez C, Segurado J, Llorca J (2004) J Mech Phys Solids 52:1573CrossRefGoogle Scholar
  5. 5.
    Llorca J, Segurado J (2004) Mater Sci Eng A365:267CrossRefGoogle Scholar
  6. 6.
    Segurado J, Gonzalez C, Llorca J (2003) Acta Mater 51:2355CrossRefGoogle Scholar
  7. 7.
    Leggoe JW, Mammoli AA, Bush MB, Hu XZ (1998) Acta Mater 46:6075CrossRefGoogle Scholar
  8. 8.
    Khvastunkov MS, Leggoe JW (2004) Mater Sci Eng A383:347CrossRefGoogle Scholar
  9. 9.
    Khvastunkov MS, Leggoe JW (2004) Scripta Mater 51:309CrossRefGoogle Scholar
  10. 10.
    Rintoul MD, Torquato S (1997) J Colloid Interface Sci 186:467CrossRefGoogle Scholar
  11. 11.
    Yeong CLY, Torquato S (1998) Phys Rev E 57:495CrossRefGoogle Scholar
  12. 12.
    Yeong CLY, Torquato S (1998) Phys Rev E 58:224CrossRefGoogle Scholar
  13. 13.
    Cule D, Torquato S (1999) J Appl Phys 86:3428CrossRefGoogle Scholar
  14. 14.
    Sheehan N, Torquato S (2001) J Appl Phys 89:53CrossRefGoogle Scholar
  15. 15.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087CrossRefGoogle Scholar
  16. 16.
    Schwarz H, Exner HE (1983) J Microscopy 129:155CrossRefGoogle Scholar
  17. 17.
    Vander Voort GF (1991) Mater Char 27:241CrossRefGoogle Scholar
  18. 18.
    Zhang J, Przystupa MA, Luevano AJ (1998) Metall Mater Trans A 29:727CrossRefGoogle Scholar
  19. 19.
    Anson JP, Gruzleski JE (1999) Mater Char 43:319CrossRefGoogle Scholar
  20. 20.
    Murphy AM, Howard SJ, Clyne TW (1988) Mater Sci Technol 14:959CrossRefGoogle Scholar
  21. 21.
    Yang N, Boselli J, Sinclair I (2001) J Microscopy 201:189CrossRefGoogle Scholar
  22. 22.
    Cressie NAC (1993) Statistics for spatial data. Wiley Interscience, New YorkGoogle Scholar
  23. 23.
    Thompson HR (1956) Ecology 37:391CrossRefGoogle Scholar
  24. 24.
    Tewari A, Gokhale AM (2004) Comp Mater Sci 31:13CrossRefGoogle Scholar
  25. 25.
    Tewari A, Gokhale AM (2004) Mater Sci Eng A 385:332CrossRefGoogle Scholar
  26. 26.
    Leggoe JW, and Riggs JB, (2005) Mater Sci Eng A submittedGoogle Scholar
  27. 27.
    Underwood EE (1970) Quantitative stereology. Addison-Wesley, ReadingGoogle Scholar
  28. 28.
    Torquato S, Truskett TM, Debenedetti PG (2000) Phys Rev Lett 84:2064CrossRefGoogle Scholar
  29. 29.
    Lu B, Torquato S (1992) Phys Rev A 45:5530CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations