Advertisement

Journal of Materials Science

, Volume 41, Issue 14, pp 4484–4489 | Cite as

In-situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation

  • G. DehmEmail author
  • M. Legros
  • B. Heiland
Article

Abstract

In-situ transmission electron microscopy (TEM) straining experiments are tedious to perform but give invaluable insight into the deformation processes of materials. With the current interest in mechanical size-effects of nanocrystalline materials and thin metallic films, in-situ tensile testing in the TEM is the key method for identifying underlying deformation mechanisms. In-situ TEM experiments can be significantly simplified using well-designed specimens. The advantages of a novel focussed ion beam design and first in-situ straining results of 500-nm thick single-crystalline Al films on polyimide are reported and compared to conventionally prepared Al films on polyimide.

Keywords

Polyimide Transmission Electron Microscopy Sample Interfacial Dislocation Conventional Transmission Electron Microscopy Tensile Testing Sample 

Notes

Acknowledgements

GD thanks Dr. T. Wagner and his team from the Max-Planck-Institut für Metallforschung, Stuttgart, for growth of the Al films on NaCl substrates and P. Gruber from the Department Metallkunde, University of Stuttgart, for deposition of the polyimide coating. The experiments were mainly performed, while GD was working at the Max-Planck-Institut für Metallforschung in Stuttgart. Dr. Sang Ho Oh is thanked for recording the image presented in Fig. 4. Support by Prof. E. Arzt for this research project is gratefully acknowledged.

References

  1. 1.
    Nix WD (1989) Metall Trans A 20:2217CrossRefGoogle Scholar
  2. 2.
    Arzt E (1998) Acta Mater 46:5611CrossRefGoogle Scholar
  3. 3.
    Arzt E, Dehm G, Gumbsch P, Kraft O, Weiss D (2001) Prog Mater Sci 46:283CrossRefGoogle Scholar
  4. 4.
    Wall MA, Dahmen U (1998) Microsc Res Tech 42:248CrossRefGoogle Scholar
  5. 5.
    Jin M, Minor AM, Stach EA, Morris JW Jr (2004) Acta Mater 52:5381CrossRefGoogle Scholar
  6. 6.
    Haque MA, Saif MTA (2005) J Mater Res 20:1769CrossRefGoogle Scholar
  7. 7.
    Giannuzzi LA, Stevie FA (1999) Micron 30:197CrossRefGoogle Scholar
  8. 8.
    Langford RM, Pettford-Long AK (2001) J Vac Sci Technol A 19:2186CrossRefGoogle Scholar
  9. 9.
    Volkert CA, Heiland B, Kauffmann F (2003) Prakt Metallogr 40:193Google Scholar
  10. 10.
    Field RD, Papin PA (2004) Ultramicroscopy 102:23CrossRefGoogle Scholar
  11. 11.
    Dehm G, Inkson BJ, Wagner T (2002) Acta Mater 50:5021CrossRefGoogle Scholar
  12. 12.
    Couret A, Crestou J, Farenc S, Molenat G, Clement N, Coujou A, Caillard D (1993) Microsc Microanal Microstruct 4:153CrossRefGoogle Scholar
  13. 13.
    Henning CAO, Boswell FW, Corbett JM (1975) Acta Metall 23:177CrossRefGoogle Scholar
  14. 14.
    Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, London, p 178; p 49Google Scholar
  15. 15.
    Hattar K, Han J, Saif MTA, Robertson IM (2005) J Mater Res 20:1869CrossRefGoogle Scholar
  16. 16.
    Freund LB (1987) J Appl Mech 43:553CrossRefGoogle Scholar
  17. 17.
    Inkson B, Dehm G, Wagner T (2000) In: Gemperlova J, Varva I (eds) Proceedings of the 12th European congress on electron microscopy, vol. 2, Brno, Czech Republic, June 2000. Czechoslovak Society for Electron Microscopy, Brno, p 539Google Scholar
  18. 18.
    Dehm G, Inkson BJ, Balk TJ, Wagner T, Arzt E (2001) Mat Res Soc Symp Proc 673:P.2.6.1CrossRefGoogle Scholar
  19. 19.
    McCarty ED, Hackney SA (1995) Mater Sci Eng A 196:119CrossRefGoogle Scholar
  20. 20.
    Müllner P, Arzt E (1998) Mat Res Soc Symp Proc 505:149CrossRefGoogle Scholar
  21. 21.
    Dehm G, Arzt E (2000) Appl Phys Lett 77:1126CrossRefGoogle Scholar
  22. 22.
    Nowak DE, Thomas O, Baker SP, Stach EA, Balzuweit K, Dahmen U (2002) Mat Res Soc Symp Proc 695:L1.2.1Google Scholar
  23. 23.
    Inkson BJ, Dehm G, Wagner T (2002) Acta Mater 50:5033CrossRefGoogle Scholar
  24. 24.
    von Blanckenhagen B, Gumbsch P, Arzt E (2003) Phil Mag Lett 83:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesLeobenAustria
  2. 2.Department Materials PhysicsUniversity of LeobenLeobenAustria
  3. 3.CEMES-CNRSToulouseFrance
  4. 4.Department ArztMax Planck Institute for Metals ResearchStuttgartGermany

Personalised recommendations