Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4777–4789 | Cite as

Kinetics of thermal degradation and thermo-oxidative degradation of conductive styrene-butadiene rubber-carbon black composites

  • G. T. Mohanraj
  • T. Vikram
  • A. M. Shanmugharaj
  • D. Khastgir
  • T. K. Chaki
Article

Abstract

The kinetics of the thermal degradation and thermo-oxidative degradation of conductive styrene-butadiene rubber (SBR)-carbon black composites were investigated using thermogravimetric analysis both in nitrogen and oxygen atmospheres. Experiments were carried out at heating rates of 5, 10, 15 and 20 °C/min in both the atmospheres. Friedman method, Kissinger method, Flynn–Wall–Ozawa method and Coats–Redfern method have been used to determine the activation energies of degradation. The invariant kinetic parameters using the IKP method were also determined. The results showed that the thermal stability of the composites in pure nitrogen is higher than that in air atmosphere and the increase in filler loading was found to increase the thermal stability in nitrogen atmosphere. The probable degradation mechanisms of the polymer in both the atmospheres were evaluated based on Fourier Transform Infra Red Spectroscopy (FT-IR) studies.

Keywords

Carbon Black Oxygen Atmosphere Isoconversional Method Filler Loading Redfern Method 

Notes

Acknowledgements

The authors thank the Indian Space Research Organization (ISRO), Bangalore for financial support of this work.

References

  1. 1.
    Gupta RK (1988) Fibre reinforcements for composites materials. Elsevier, Amsterdam chap. 2Google Scholar
  2. 2.
    Meyers MA (1985) Frontiers in materials technologies. Elsevier, Amsterdam, chap. 1Google Scholar
  3. 3.
    Narkis M, Vaxman A (1984) J Appl Polym Sci 29:1639CrossRefGoogle Scholar
  4. 4.
    Kakizawa K (1986) Int Polym Sci Technol 13(2):40Google Scholar
  5. 5.
    Chung DDL (2001) Carbon 39(2):279CrossRefGoogle Scholar
  6. 6.
    Cheon OS, Pyeong LH, Sung-Chul Yi, Ok YK (1999) J Fire Sci 17(5):362CrossRefGoogle Scholar
  7. 7.
    Cheon OS, Pyeong LH, Taik KH, Ok YK (1999) J Chem Eng 16(4):543Google Scholar
  8. 8.
    Li KW, Deuk KS, Bum LS, Kwon HI (2000) J Ind Eng Chem (Seoul) 6(5):348Google Scholar
  9. 9.
    Cheon OS, Chul JH, Taik KH (2003) J Chem Eng Jpn 36(8):1016CrossRefGoogle Scholar
  10. 10.
    Budrugeac P (2001) Polym degrad stab 74:125CrossRefGoogle Scholar
  11. 11.
    Wen-Yen C, Fa-Tai W, Leo-Wang C, Trong-Ming D, Ching-Yuan L (2000) Polym degrad Stab 67:223CrossRefGoogle Scholar
  12. 12.
    Katsikas L, Boskovic G, Velickovic SJ, Velickovic JS, Popovic IG (2000) Eur Polym J 36:1619CrossRefGoogle Scholar
  13. 13.
    Santhana Gopala Krishnan P, Vora RH, Veeramani S, Hong GS, Tai-Shung C (2002) Polym Degrad Stab 75:273CrossRefGoogle Scholar
  14. 14.
    Friedman HJ (1964) Polym Sci Part C 6:183CrossRefGoogle Scholar
  15. 15.
    Kissinger H (1957) Anal Chem 29:1702CrossRefGoogle Scholar
  16. 16.
    Flynn J, Wall L (1966) J Polym Sci B 4:323CrossRefGoogle Scholar
  17. 17.
    Ozawa T (1965) Bull Chem Soc Jpn 38:1881CrossRefGoogle Scholar
  18. 18.
    Flynn H, Wall LA (1967) Polym Lett 5:191CrossRefGoogle Scholar
  19. 19.
    Coats A, Redfern J (1964) Nature 201:68CrossRefGoogle Scholar
  20. 20.
    Lesnikovich AI, Levchik SV (1985) J Thermal Analysis 30:667Google Scholar
  21. 21.
    Mohanraj GT, Chaki TK, Chakraborty A, Khastgir D (2004) J Appl Polym Sci 92:2179CrossRefGoogle Scholar
  22. 22.
    Donnet JB, Wong MJ (eds) (1993) Carbon black science & technology, 2nd edn. Marcel Dekker Inc., NY, Chap 9, p 295Google Scholar
  23. 23.
    Gonzalez AV, Veleva L (2004) Polym Degrad Stab 83:139CrossRefGoogle Scholar
  24. 24.
    Ronaldo AC, Regina CRN, Vera LL (1996) Polym Degrad Stab 52:245CrossRefGoogle Scholar
  25. 25.
    CR Acad Sco, Ser C 266:678 (1968)Google Scholar
  26. 26.
    Abu-Zeid ME, Youssef YA (1986) J Appl Polym Sci 31:1575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • G. T. Mohanraj
    • 1
  • T. Vikram
    • 1
  • A. M. Shanmugharaj
    • 2
  • D. Khastgir
    • 1
  • T. K. Chaki
    • 1
  1. 1.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Chemical EngineeringCollege of Environment and Applied Chemistry, Kyung Hee UniversityYonginSouth Korea

Personalised recommendations