Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4832–4838 | Cite as

A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA)

  • Simon Shawe
  • Fraser Buchanan
  • Eileen Harkin-Jones
  • David Farrar
Article

Abstract

As part of a study to characterise bioabsorbable scaffolds for tissue engineering an investigation has been conducted into the rate of degradation of polyglycolic acid (PGA). This is one of the most commonly used bioabsorbable materials and has been used in sutures since the 60s and more recently in cell scaffolds, drug delivery devices and bone fixation pins. This study looks at the influence that surface-to-volume ratio i.e. thickness of material, has on degradation. By degrading various thicknesses of PGA in a buffer saline solution over 24 days and testing their properties at regular intervals, a knowledge of how surface-to-volume ratio affects degradation was developed. Properties such as weight loss, crystallinity, molecular weight and structural integrity were measured. Results showed that rate of mass loss was dependent on sample thickness but crystallinity, melting point and molecular weight were independent of thickness.

Keywords

Differential Scanning Calorimetry Mass Loss Melting Enthalpy Thick Sample Thin Sample 

Notes

Acknowledgement

The author would like to thank Smith & Nephew for supplying the materials for this study.

References

  1. 1.
    Agrawal CM, Ray BB (2000) J Biomed Mater Res 55:141CrossRefGoogle Scholar
  2. 2.
    Li SM, Garreau H, Vert M (1990) J Mat Sci 1:121Google Scholar
  3. 3.
    Li SM, Garreau H, Vert M (1990) J Mat Sci 1:131Google Scholar
  4. 4.
    Li SM, Garreau H, Vert M (1990) J Mat Sci 1:198Google Scholar
  5. 5.
    Ashammakhi N, Makela EA, Vihtonen K, Rokkanen P, Kuisma H, Tormala P (1995) Biomaterials 16:135CrossRefGoogle Scholar
  6. 6.
    Pillai O, Panchagnula R (2001) Chem Biol 5:447Google Scholar
  7. 7.
    Hurrell S, Cameron RE (2002) Biomaterials 23:2401CrossRefGoogle Scholar
  8. 8.
    Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Chem Rev 99:3181CrossRefGoogle Scholar
  9. 9.
    Törmälä P, Pohjonen T, Rokkanen P (1998) Proc Inst Mech Eng 212 Pt H:101CrossRefGoogle Scholar
  10. 10.
    Middleton JC, Tipton AJ (2000) Biomaterials 21:2335CrossRefGoogle Scholar
  11. 11.
    Bostman O, Pihlajamaki H (2000) Biomaterials 21:2615CrossRefGoogle Scholar
  12. 12.
    Gunatillake PA, Adhikari R (2003) Eur Cells Mater 5:1CrossRefGoogle Scholar
  13. 13.
    Hutmacher WD (2000) Biomaterials 21:2529CrossRefGoogle Scholar
  14. 14.
    Whang K, Thomas CH, Healy KE (1995) Polymer 36(4):837CrossRefGoogle Scholar
  15. 15.
    Hurrell S, Cameron RE (2001) J Mater Sci 12:811Google Scholar
  16. 16.
    Shum AWT, Mak AFT (2003) Polym Degrad Stab 81:141CrossRefGoogle Scholar
  17. 17.
    King E, Cameron RE (1998) Macromol Symp 130:19CrossRefGoogle Scholar
  18. 18.
    King E, Cameron RE (1997) J Appl Polym Sci 66:1681CrossRefGoogle Scholar
  19. 19.
    Wu HC, Shen FU, Hong X, Chang WV, Hinet H (2003) Biomaterials 24:3871CrossRefGoogle Scholar
  20. 20.
    Hurrell S, Milroy GE, Cameron RE (2003) J Mat Sci 14:457Google Scholar
  21. 21.
    Barrows TH (1986) Clin Mater 1:233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Simon Shawe
    • 1
  • Fraser Buchanan
    • 1
  • Eileen Harkin-Jones
    • 1
  • David Farrar
    • 2
  1. 1.Queen’s University BelfastBelfastUK
  2. 2.Smith & Nephew Research GroupYorkUK

Personalised recommendations