Journal of Materials Science

, Volume 41, Issue 15, pp 4713–4719 | Cite as

La1−xA′xCo1−yFeyO3±δ (A′ = Ce,Sr) catalysts for the flameless combustion of methane

  • E. Campagnoli
  • A. C. Tavares
  • L. Fabbrini
  • I. Rossetti
  • Yu. A. Dubitsky
  • A. Zaopo
  • L. ForniEmail author


A set of La1−xA′xCo1−yFeyO3±δ samples (A′ = Ce,Sr; x = 0.1, 0.4, y = 0, 0.5, 0.8, 1) was prepared by means of the sol–gel citrate method and characterised through X-ray diffraction (XRD), N2 adsorption/desorption and temperature programmed desorption–reduction (TPD-TPR). Their activity for the catalytic flameless combustion of methane was tested and the results interpreted focusing on the effect of doping at A and/or B position. It was found that Ce doping of lanthanum ferrite catalysts could suppress suprafacial activity and slightly enhance intrafacial activity, due to the change of oxygen mobility. However, catalytic activity seems independent of the type of electronic conductivity (p- or n-type), the activity of an analogously Sr-doped sample being similar to that of the Ce-doped one. Mixed B-metal composition can help in modulating both oxygen mobility and catalyst stability under reducing reaction conditions. High Fe content allows to optimise this last parameter. However, depression of oxygen mobility and hence of activity has to be prevented by proper doping at A-position.


Temperature Program Desorption Methane Conversion LaFeO3 LaCoO3 Oxygen Mobility 



We are indebted to Pirelli Labs SpA for financial aid and for the permission to publish the present data.


  1. 1.
    Yamazoe N, Teraoka Y (1990) Catal Today 8:175CrossRefGoogle Scholar
  2. 2.
    Peňa MA, Fierro JLG (2001) Chem Rev 101:1981CrossRefGoogle Scholar
  3. 3.
    Fierro JLG (1993) In: Tejuca LG, Fierro JLG (eds) Properties and applications of perovskite-type oxides. M. Dekker, New York, p 195Google Scholar
  4. 4.
    Voorhoeve RJH, Remeika JP, Johnson DW (1973) Science 180:62CrossRefGoogle Scholar
  5. 5.
    Steele BCH, Middleton PH, Rudkin RA (1990) Solid State Ionics 40/41:388CrossRefGoogle Scholar
  6. 6.
    Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Chem Lett 1743Google Scholar
  7. 7.
    Giacomuzzi RAM, Portinari M, Rossetti I, Forni L (2000) Stud Surf Sci Catal 130A:197CrossRefGoogle Scholar
  8. 8.
    Leanza R, Rossetti I, Fabbrini L, Oliva C, Forni L (2000) Appl Catal B Environ 28:55CrossRefGoogle Scholar
  9. 9.
    Fabbrini L, Rossetti I, Forni L (2003) Appl Catal B Environ 44:107CrossRefGoogle Scholar
  10. 10.
    Ferri D, Forni L (1998) Appl Catal B Environ 16:119CrossRefGoogle Scholar
  11. 11.
    Oliva C, Forni L, Vishniakov AV (2000) Spectrochim Acta Part A 56:301CrossRefGoogle Scholar
  12. 12.
    Rossetti I, Forni L (2001) Appl Catal B Environ 33:345CrossRefGoogle Scholar
  13. 13.
    Park S, Vohs JM, Gorte RJ (2000) Nature 404:265CrossRefGoogle Scholar
  14. 14.
    Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M (2000) Science 288:203CrossRefGoogle Scholar
  15. 15.
    Baker RT, Metcalfe IS, Middleton PH, Steele BCH (1994) Sol St Ionics 72:328CrossRefGoogle Scholar
  16. 16.
    Zhang HM, Yamazoe N, Teraoka Y (1998) J Mater Sci Lett 8:995CrossRefGoogle Scholar
  17. 17.
    Beson SJ, Waller D, Kilner JA (1999) J Electrochem Soc 146:1305CrossRefGoogle Scholar
  18. 18.
    Tsai CY, Dixon AG, Ma YH, Moser WR, Pascucci MR (1998) J Am Ceram Soc 81:1437CrossRefGoogle Scholar
  19. 19.
    Xu Q, Huang D, Chen W, Lee J, Wang H, Yuan R (2004) Scripta Mater 50:165CrossRefGoogle Scholar
  20. 20.
    Selected Powder X-Ray Diffraction Data, JCPDS, Swarthmore, PA, files no. 25–1060 and 37–1493Google Scholar
  21. 21.
    Forni L, Toscano M, Pollesel P (1991) J Catal 130:392CrossRefGoogle Scholar
  22. 22.
    Campagnoli E, Tavares A, Fabbrini L, Rossetti I, Dubitsky Yu A, Zaopo A, Forni L (2005) Appl Catal B Environ 55:133CrossRefGoogle Scholar
  23. 23.
    Szabo V, Bassir M, Van Neste A, Kaliaguine S (2003) Appl Catal B Environ 43:81CrossRefGoogle Scholar
  24. 24.
    Szabo V, Bassir M, Van Neste A, Kaliaguine S (2002) Appl Catal B Environ 37:175CrossRefGoogle Scholar
  25. 25.
    (a) Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solutions, IUPAC, In: Dekker M (ed) New York (b) Kerr JA (2000) In: Lide DR (ed) CRC Handbook of Chemistry and Physics 1999–2000, 81st edn. CRC PressGoogle Scholar
  26. 26.
    Arai H, Yamada T, Eguchi K, Seiyama T (1986) Appl Catal 26:265CrossRefGoogle Scholar
  27. 27.
    Doshi R, Alcock CB, Gunasekaran N, Carberry JJ (1993) J Catal 140:557CrossRefGoogle Scholar
  28. 28.
    Shao Z, Dong H, Xiong G, Cong Y, Yang W (2001) J Membrane Sci 183:181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • E. Campagnoli
    • 1
  • A. C. Tavares
    • 2
  • L. Fabbrini
    • 1
  • I. Rossetti
    • 1
  • Yu. A. Dubitsky
    • 2
  • A. Zaopo
    • 2
  • L. Forni
    • 1
    Email author
  1. 1.Dipartimento di Chimica Fisica ed ElettrochimicaUniversità degli Studi di MilanoMilanoItaly
  2. 2.Pirelli Labs SpAMilanoItaly

Personalised recommendations