Advertisement

Journal of Materials Science

, Volume 41, Issue 14, pp 4668–4677 | Cite as

Synthesis and characterization of zircon sand/Al-4.5 wt% Cu composite produced by stir casting route

  • Sanjeev Das
  • V. Udhayabanu
  • S. Das
  • K. DasEmail author
Article

Abstract

Zircon sand particles of different size and amount have been incorporated in Al-4.5 wt% Cu alloy by stir casting route. Coarser particles of size between 90 and 135 μm can be dispersed in substantial amounts (up to 30 wt%), where as finer particles of size 15 and 65 μm have limited dispersion, 10 and 20 wt%, respectively. The matrix of the composites has cellular structure, where the size of the cell depends on zircon particle size and its amount in the composite. Segregation of copper rich phase (CuAl2) has been found in the vicinity of the particle–matrix interface. The abrasive wear resistance of the composite improves with the increase in amount or decrease in size of zircon particles.

Keywords

Zircon Wear Rate Interparticle Spacing Abrasive Wear Resistance Zircon Particle 

References

  1. 1.
    McDanels DL (1985) Metall Trans A 16:1105CrossRefGoogle Scholar
  2. 2.
    Ralph B, Yuen HC, Lee WB (1997) J Mater Proc Technol 63:339CrossRefGoogle Scholar
  3. 3.
    Surappa MK, Rohatgi RK (1981) J Mater Sci 16:983CrossRefGoogle Scholar
  4. 4.
    Seo YH, Kang CG (1999) Compos Sci Technol 59:643CrossRefGoogle Scholar
  5. 5.
    Skolianos S (1996) Mater Sci Eng A 210:76CrossRefGoogle Scholar
  6. 6.
    Kang CG, Yoon JH, Seo YH (1997) J Mater Proc Technol 66:30CrossRefGoogle Scholar
  7. 7.
    Yilmas M, Altintas S, Proceedings of the Second International Biennial European Joint Conference on Engineering System, UK, p 119Google Scholar
  8. 8.
    Hanumanth GS, Irons GA (1993) J Mater Sci 28:2459CrossRefGoogle Scholar
  9. 9.
    Lee JC, Byun JY, Oh CS, Seok HK, Lee HI (1997) Acta Mater 45:5303CrossRefGoogle Scholar
  10. 10.
    Yunsheng X, Chung DDL (1998) J Mater Sci 33:4707CrossRefGoogle Scholar
  11. 11.
    Seo YH, Kang CG (1995) J Mater Proc Technol 55:370CrossRefGoogle Scholar
  12. 12.
    Zhang S, Cao F, Chen Y, Li Q, Jiang Z (1998) Acta Mater Compos Sin 15:88Google Scholar
  13. 13.
    Bar J, Klubmann HG, Gudlat HJ (1993) Scripta Metall Mater 29:787CrossRefGoogle Scholar
  14. 14.
    Sonsino CM, Backer E (1991) Materialistische Wissenschaft und Werkstofftechnik 22:48CrossRefGoogle Scholar
  15. 15.
    Gui MC, Wang DB, Wu JJ, Yuan GJ, Li CG (2000) Mater Sci Tech 16:556CrossRefGoogle Scholar
  16. 16.
    Banerji A, Surappa MK, Rohatgi PK (1993) Metall Trans B 14B:273Google Scholar
  17. 17.
    Hashim J, Looney L, Hashmi MSJ (1999) J Mater Proc Technol 92–93:1CrossRefGoogle Scholar
  18. 18.
    Gupta M, Qin S, Chin LW (1997) J Mater Proc Technol 65:245CrossRefGoogle Scholar
  19. 19.
    Asthana R (1998) J Mater Sci 33:1679CrossRefGoogle Scholar
  20. 20.
    Dutta B, Surappa MK (1998) Composite Part A 29A:567Google Scholar
  21. 21.
    Robinowicz E (1965) Friction and wear of materials. Wiley, New YorkGoogle Scholar
  22. 22.
    Wang A, Rack HJ (1991) Wear 146:337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology, KharagpurKharagpurIndia

Personalised recommendations