Growth of highly c-axis oriented aluminum nitride thin films on β-tantalum bottom electrodes
- 99 Downloads
- 3 Citations
Abstract
We have investigated the influence of tantalum (Ta) bottom electrodes on the crystallinity and crystal orientation of aluminum nitride (AlN) thin films. AlN thin films and Ta electrodes were prepared by using rf magnetron sputtering method. The crystal structure of the Ta electrodes was tetragonal (β-Ta, a metastable phase) at room temperature. The crystallinity and orientation of the AlN thin films and Ta electrodes strongly depended on sputtering conditions. Especially, the crystallinity and crystal orientation of the Ta electrodes were influenced by their film thickness and the substrate temperature. When the thickness of the Ta bottom electrodes was 200 nm and the substrate temperature was 100 °C, the AlN thin films indicated high c-axis orientation (the full width at half maximum of rocking curve of 3.9°). The crystal orientation of the AlN film was comparable to that of AlN thin films deposited on face centered cubic (fcc) lattice structure metal, such as Au, Pt and Al, bottom electrodes.
Keywords
Substrate Temperature Crystal Orientation Bottom Electrode Piezoelectric Layer Aluminum NitrideNotes
Acknowledgements
We thank Dr. Tateyama of AIST kyushu center for valuable advice on crystal growth mechanism and for information on making thin films.
References
- 1.Dubois MA, Muralt P (1999) Appl Phys Lett 74:3032CrossRefGoogle Scholar
- 2.Ohsatoh H (2004) Bull Ceram Soc Jpn 39:78Google Scholar
- 3.Tsubouchi K, Mikoshiba N (1985) IEEE Trans Sonics Ultrason SU–32:634CrossRefGoogle Scholar
- 4.Ohta J, Fujioka H, Sumiya M, Koinuma H, Oshima M (2001) J Crystal Growth 225:73CrossRefGoogle Scholar
- 5.Strite S, Morkoc H (1992) J Vac Sci Technol B 10:1237CrossRefGoogle Scholar
- 6.Butcher KSA, Tansley TL (2001) J Appl Phys 90:6217CrossRefGoogle Scholar
- 7.Yim WM, Paff RJ (1974) J Appl Phys 45:1456CrossRefGoogle Scholar
- 8.Zheng L, Ramalingam S, Shi T, Peterson RL (1993) J Vac Sci Technol A 11:2437CrossRefGoogle Scholar
- 9.Akiyama M, Ueno N, Nonaka K, Tateyama H (2003) Appl Phys Lett 82:1977CrossRefGoogle Scholar
- 10.Akiyama M, Xu CN, Kodama M, Usui I, Nonaka K, Watanabe T (2001) J Am Ceram Soc 84:1917CrossRefGoogle Scholar
- 11.Shiosaki T, Hayashi M, Kawabata A (1982) Audio-frequency characteristics of a piezoelectric speaker using an AlN film deposited on a polymer or metal membrane, San Diego, U.S.A. Ultrasonic Symposium IEEE Proceeding (1982) 529Google Scholar
- 12.Naik RS, Lutsky JJ, Reif RR, Sodini CG, Becker A, Fetter L, Huggins H, Miller R, Pastalan J, Rittenhouse G, Wong YH (2000) IEEE Trans Ultra Ferro Freq Con 47:292CrossRefGoogle Scholar
- 13.Akiyama M, Nagao K, Ueno N, Tateyama H, Yamada T (2004) Vacuum 74:699CrossRefGoogle Scholar
- 14.Akiyama M, Xu CN, Nonaka K, Shobu K, Watanabe T (1998) Thin Solid Films 315:62CrossRefGoogle Scholar
- 15.Jiang A, Yohannan A, Nnolim NO, Tyson TA, Axe L, Lee SL, Cote P (2003) Thin Solid Films 437:116CrossRefGoogle Scholar
- 16.Cullity B (1955) Elements of X-ray diffraction. Addison-Welsey, LondonGoogle Scholar
- 17.Akiyama M, Nonaka K, Shobu K, Watanabe T (1995) J Ceram Soc Jpn 103:1093CrossRefGoogle Scholar
- 18.Thornton JA (1974) J Vac Sci Technol 11:3059CrossRefGoogle Scholar
- 19.Drif AV (1967) Philips Res Repts 22:267Google Scholar
- 20.Read MH, Altman C (1965) Appl Phys Lett 7:51CrossRefGoogle Scholar
- 21.Hoogeveen R, Moske M, Geisler H, Samwer K (1996) Thin Solid Films 275:203CrossRefGoogle Scholar
- 22.Jakkraju R, Henn G, Shearer C, Harris M, Rimmer N, Rimmer N, Rich P (2003) Microelectron Eng 70:566CrossRefGoogle Scholar