Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4706–4712 | Cite as

Magnetization study of Fe-doped ZnO co-doped with Cu: Synthesized by wet chemical method

  • O. D. Jayakumar
  • I. K. Gopalakrishnan
  • S. K. Kulshreshtha
Article

Abstract

Fe- and Cu-doped ZnO of nominal compositions Zn0.95Fe0.05O and Zn0.94Fe0.05Cu0.01O were synthesized by a wet chemical route. X-ray diffraction analysis of the samples annealed at 575 K showed that they are single phase without any secondary phases. DC magnetization measurements of Cu co-doped samples (Zn0.94Fe0.05Cu0.01O) as a function of field at room temperature showed ferromagnetic signature while the samples without Cu co-doping (Zn0.95Fe0.05O) are paramagnetic in nature. On increasing the temperature of annealing from 575 K to 1,075 K an impurity phase emerges in both the samples, which has been identified as a variant of ZnFe2O4. Both the samples heated at and above 1,075 K are found to be paramagnetic at room temperature. These observations, the absence of room temperature ferromagnetism in Zn0.95Fe0.05O and the disappearance of ferromagnetism in Zn0.94Fe0.05Cu0.01O on raising the temperature of annealing clearly rules out the likelihood of room temperature ferromagnetism arising from the impurity phases like γ-Fe2O3 and/or ZnFe2O4 that might have been formed during the synthesis. Our results strongly suggest that room temperature ferromagnetism in Zn0.94Fe0.05Cu0.01O can be attributed to the formation of a secondary phase of Cu-doped ZnFe2O4.

Keywords

Impurity Phase ZnFe2O4 CuFe2O4 Room Temperature Ferromagnetism Ammonium Ferrous Sulphate 

References

  1. 1.
    Dietl T, Ohno H, Matsukura, F, Cibert J, Ferrand D (2000) Science 287:1019CrossRefGoogle Scholar
  2. 2.
    Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AV, Treger DM (2001) Science 294:1488CrossRefGoogle Scholar
  3. 3.
    Ohno Y, Young DK, Beshoten B, Matsukura F, Ohno H, Awschalom DI (1999) Nature 402:790CrossRefGoogle Scholar
  4. 4.
    Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Nortan DP, Theodorpoulou N, Hebard AF, Park YD, Ren F, Kim J, Boatner LA (2003) J Appl Phys 93:1CrossRefGoogle Scholar
  5. 5.
    Park MS, Min BI (2001) Phys Rev B 308–310:904Google Scholar
  6. 6.
    Park MS, Min BI (2003) Phys Rev B 68:224436CrossRefGoogle Scholar
  7. 7.
    Coey JMD, Venkatesan M, Fitzgerald CB (2005) Nat Mater 4:173CrossRefGoogle Scholar
  8. 8.
    Jeonga YH, Hana S-J, Parka J-H, Lee YH (2004) J Magn Magn Mater 272–276:1976CrossRefGoogle Scholar
  9. 9.
    Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo YZ, Murakami M, Matsumoto Y, Hasegawa T, Koinuma H (2001) Appl Phys Lett 78:3824CrossRefGoogle Scholar
  10. 10.
    Ueda K, Tabata H, Kawai T (2001) Appl Phys Lett 79:988CrossRefGoogle Scholar
  11. 11.
    Jung SW, An SJ, Yi GC, Jung CU, Lee SI, Cho S (2002) Appl Phys Lett 80:4561CrossRefGoogle Scholar
  12. 12.
    Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S, Koinuma H (2001) Appl Phys Lett 78:958CrossRefGoogle Scholar
  13. 13.
    Cheng XM, Chien CL (2003) J Appl Phys 93:7876CrossRefGoogle Scholar
  14. 14.
    Yoon SW, Cho SB, We SC, Yoon S, Suh BJ, Song HK, Shin YJ (2003) J Appl Phys 93:7879CrossRefGoogle Scholar
  15. 15.
    Sharma P, Gupta A, Rao KV, Owens FJ, Sharma R, Ahuja R, Osorio Gillen JM, Johasson B, Gehring GA (2003) Nat Mater 2:673CrossRefGoogle Scholar
  16. 16.
    Han SJ, Song JW, Yang CH, Park SH, Park JH, Jeong YH, Rhie KW (2002) Appl Phys Lett 81:4212CrossRefGoogle Scholar
  17. 17.
    Han S-J, Jang T-H, Kim YB, Park BG, Park J-H, Jeong YH (2003) Appl Phys Lett 83:920CrossRefGoogle Scholar
  18. 18.
    Kundaliya DC, Ogale SB, Lofland SE, Dhar S, Metting CJ, Shinde SR, Ma Z, Varughese B, Ramanujachary KV, Salamanca-Riba L, Venkatesan T (2004) Nat Mater 3:709CrossRefGoogle Scholar
  19. 19.
    Norberg NS, Kittilstved KR, Amonette JE, Kukkadapu RV, Schwartz DA, Gamelin DR (2004) J Am Chem Soc 126:9387CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Carvajal J Fullprof: a program for Rietveld refinement and profile matching analysis of complex powder diffraction patterns ILLGoogle Scholar
  21. 21.
    Rana MU, Misbah-ul I, Tahir A (2000) Mater Chem Phys 65:345CrossRefGoogle Scholar
  22. 22.
    Hurd CM (1982) Contemp Phys 23:469CrossRefGoogle Scholar
  23. 23.
    Burghart FJ, Potzel W, Kalvius GM, Schreier E, Grosse G, Noakes DR, Schafer W, Kockelmann W, Campbell SJ, Kaczmarek WA, Martin A, Krause MK (2000) Physica B 289–290:286CrossRefGoogle Scholar
  24. 24.
    Schafer W, Kockelmann W, Kirfel A, Potzel W, Burghart FJ, Kalvius GM, Martin A, Kaczmarek WA, Schreier E, Campbell SJ (2000) Mater Sci Forum 321–324:802CrossRefGoogle Scholar
  25. 25.
    Goya GF, Rechenberg HR (1999) J Magn Magn Mater 196–197:191CrossRefGoogle Scholar
  26. 26.
    Schiessl W, Potzel H, Karzel M, Steiner GM, Kalvius A, Martin MK, Halevy I, Gal J, Schäfer W, Will G, Hillberg M, Wäppling R (1996) Phys Rev B 53:9143CrossRefGoogle Scholar
  27. 27.
    Guaiata FJ, Beltrán H, Cordoncillo E, Carda JB, Escribano P (1999) J Eur Ceram Soc 19:363CrossRefGoogle Scholar
  28. 28.
    Hamdeh H, Ho JC, Oliver SA, Willey RJ, Oliveri G, Busca GJ (1997) J Appl Phys 81:1851CrossRefGoogle Scholar
  29. 29.
    Hochepied JF, Bonville P, Pilen MP (2000) J Phys Chem B 104:5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • O. D. Jayakumar
    • 1
  • I. K. Gopalakrishnan
    • 1
  • S. K. Kulshreshtha
    • 1
  1. 1.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations