Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4737–4743 | Cite as

Preparation of manganese molybdate rods and hollow olive-like spheres

  • Shuijin Lei
  • Kaibin Tang
  • Qiangchun Liu
  • Zhen Fang
  • Qing Yang
  • Huagui Zheng
Article

Abstract

Stable phase alpha-manganese molybdate (α-MnMoO4) rods, wolframite structure MnMoO4 hollow olive-like spheres and hexahedron-like manganese molybdate monohydrate (MnMoO4·H2O) were selectively synthesized by a simple hydrothermal method at 150–200 °C. Experiments showed that the reaction temperature, pH, molybdenum source and ligand played very important roles in controlling the polymorph and morphologies of the product. The samples were characterized by X-ray powder diffraction and scanning electron microscopy. Possible formation process of the product was proposed.

Keywords

Electron Spin Resonance MoO3 Tartaric Acid BaWO4 Simple Hydrothermal Method 

Notes

Acknowledgements

Financial supports by the National Natural Science Foundation of China, the 973 Projects of China and the Program for new Century Excellent Talents in university (NCET) are gratefully acknowledged.

References

  1. 1.
    Pileni MP, Ninham BW, Gulik-Krzywicki T, Tanori J, Lisiecki I, Filankembo A (1999) Adv Mater 11:1358CrossRefGoogle Scholar
  2. 2.
    Li M, Schnablegger H, Mann S (1999) Nature 402:393CrossRefGoogle Scholar
  3. 3.
    Kim F, Kwan S, Amana J, Yang P (2001) J Am Chem Soc 123:4360CrossRefGoogle Scholar
  4. 4.
    Kwan S, Kim F, Akana J, Yang P (2001) Chem Commun 5:447CrossRefGoogle Scholar
  5. 5.
    Shi HT, Qi LM, Ma JM, Cheng HM (2002) Chem Commun 16:1704CrossRefGoogle Scholar
  6. 6.
    Estroff LA, Hamilton AD (2001) Chem Mater 13:3227CrossRefGoogle Scholar
  7. 7.
    Yu SH, Antonietti M, Cölfen H, Hartmann J (2003) Nano Lett 3:379CrossRefGoogle Scholar
  8. 8.
    Chen SJ, Chen XT, Xue ZL, Zhou JH, Li J, Hong JM, You XZ (2003) J Mater Chem 13:1132CrossRefGoogle Scholar
  9. 9.
    Clearfield A, Sims MJ, Gopal R (1976) Inorg Chem 15:335CrossRefGoogle Scholar
  10. 10.
    Clearfield A, Gopal R, Saldarriaga-Molina CH (1977) Inorg Chem 16:628CrossRefGoogle Scholar
  11. 11.
    Doyle WP, McGuire G, Clark GM (1966) J Inorg Nucl Chem 28:1185CrossRefGoogle Scholar
  12. 12.
    Rajaram P, Viswanathan B, Sastri MVC, Srinivasan V (1974) Indian J Chem 12:1267Google Scholar
  13. 13.
    Veleva S, Trifiro F (1976) Kinet Catal Lett 4:19CrossRefGoogle Scholar
  14. 14.
    Uitert LGV, Sherwood RC, Williams HJ, Rubin JJ, Bonner WA (1964) J Phys Chem Solids 25:1447CrossRefGoogle Scholar
  15. 15.
    Attfield JP (1990) J Phys Condens Matter 2:6999CrossRefGoogle Scholar
  16. 16.
    Lippold B, Herrmann J, Reichelt W, Oppermann H (1991) Phys Status Solidi A124:K59CrossRefGoogle Scholar
  17. 17.
    Lautenschlager G, Weitzel H, Fuess H, Ressouche EZ (1994) Kristallografiya 209:936Google Scholar
  18. 18.
    Sung-Soo K, Seiichiro O, Hiromasa I, Yoshiharu U, Masataka W (2001) Chem Lett 8:760Google Scholar
  19. 19.
    Rajaram P, Viswanathan B, Aravamudan G, Srinivasan V, Sastri MVC (1973) Thermochim Acta 7:123CrossRefGoogle Scholar
  20. 20.
    Sleight AW, Chamberland BI (1968) Inorg Chem 7:1672CrossRefGoogle Scholar
  21. 21.
    Abrahams SC, Reddy JM (1965) J Chem Phys 43:2533CrossRefGoogle Scholar
  22. 22.
    Young AP, Schwartz CM (1963) Science 141:348CrossRefGoogle Scholar
  23. 23.
    Clearfield A, Moini A, Rudolf PR (1985) Inorg Chem 24:4606CrossRefGoogle Scholar
  24. 24.
    Errandonea D, Somayazulu M, Häusermann D (2003) Phys Status Solidi (B) 235:162CrossRefGoogle Scholar
  25. 25.
    Sleight AW (1972) Acta Cryst B 28:2899CrossRefGoogle Scholar
  26. 26.
    Corbet F, Eyraud Ch (1961) Bull Soc Chim Fr 571Google Scholar
  27. 27.
    Pezerat HCR (1967) Seances Acad Sci Ser C 265:368Google Scholar
  28. 28.
    Strobel P, Le Page Y (1983) J Cryst Growth 61:329CrossRefGoogle Scholar
  29. 29.
    Jang M, Weakley TJR, Doxsee KM (2001) Chem Mater 13:519CrossRefGoogle Scholar
  30. 30.
    Sinhamahapatra PK, Bhattacharyya SK (1975) J Therm Anal 8:45CrossRefGoogle Scholar
  31. 31.
    Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287:1471CrossRefGoogle Scholar
  32. 32.
    Yin YD, Lu Y, Gates B, Xia YN (2001) Chem Mater 13:1146CrossRefGoogle Scholar
  33. 33.
    Trifirò F, Centola P, Pasquon I (1968) J Catal 1:86CrossRefGoogle Scholar
  34. 34.
    Nakamoto K (1970) In: Infrared spectra of inorganic and coordination compounds, 2nd edn. Wiley-Interscience, New York, p 111Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Shuijin Lei
    • 1
  • Kaibin Tang
    • 1
  • Qiangchun Liu
    • 1
  • Zhen Fang
    • 1
  • Qing Yang
    • 1
  • Huagui Zheng
    • 2
  1. 1.Nanomaterial and Nanochemistry, Hefei National Laboratory for Physical Sciences at Micro-scaleUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.Department of ChemistryUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations