Advertisement

Journal of Materials Science

, Volume 41, Issue 21, pp 7096–7102 | Cite as

Crystallization process and electro-optical properties of In2O3 and ITO thin films

  • Frederick Ojo Adurodija
  • Lynne Semple
  • Ralf  Brüning
Article

Abstract

Amorphous indium oxide (In2O3) and 10-wt% SnO2 doped In2O3 (ITO) thin films were prepared by pulsed-laser deposition. These films were crystallized upon heating in vacuum at an effective heating rate of 0.00847 °C/s, while the evolution of the structure was observed by in situ X-ray diffraction measurements. Fast crystallization of the films is observed in the temperature ranges 165–210 °C and 185–230 °C for the In2O3 and ITO films, respectively. The crystallization kinetics is described by a reaction equation, with activation energies of 2.31 ± 0.06 eV and 2.41 eV and order of reactions of 0.75 ± 0.07 and 0.75 for the In2O3 and ITO films, respectively. The structures of the films observed here during heating are compared with those obtained upon film growth at different temperatures. The resistivity of the films depends on the evolution of the structure, the oxygen content and the activation of tin dopants in the films. A low resistivity of 5.5 × 10−4 Ω cm was obtained for the In2O3 and ITO films at room temperature, after annealing to 250 °C the resistivity of the ITO film reduces to 1.2 × 10−4 Ω cm.

Keywords

SnO2 Crystallization Temperature Oxygen Pressure In2O3 Crystallization Kinetic 

Notes

Acknowledgments

This project is partly sponsored by Atlantic Innovation Fund (AIF) and Natural Science and Engineering Research Council (NSERC).

References

  1. 1.
    Granqvist CG, (2000) Solar Energy Mater Solar Cells 60:201CrossRefGoogle Scholar
  2. 2.
    Adurodija FO (2001) In: Nalwa HS (ed) Handbook of thin films: deposition and processing of films, vol 1. Academic Press, New York, p 161Google Scholar
  3. 3.
    Ellmer K, Mientus R, Weiß V, Rossner H (2003) Meas Sci Technol 14:336CrossRefGoogle Scholar
  4. 4.
    Diniz ASAC, Keily CJ (2004) Renewable Energy 29:2037CrossRefGoogle Scholar
  5. 5.
    Ow-Yang CW, Springer D, Shigesato Y, Paine DC (1998) J Appl Phys 88:145CrossRefGoogle Scholar
  6. 6.
    Rogozin A, Shevchenko N, Vinnichenko M, Prokert F, Cantelli V (2004) Appl Phys Lett 85:212CrossRefGoogle Scholar
  7. 7.
    Morikawa H, Fujita M (2000) Thin Solid Films 359:61CrossRefGoogle Scholar
  8. 8.
    Wulff H, Quaas M, Steffen H, Hippler R (2000) Thin Solid Films 377–378:418CrossRefGoogle Scholar
  9. 9.
    Morikawa H, Sumi H, Kohyama M (1996) Thin Solid Films 281–282:202CrossRefGoogle Scholar
  10. 10.
    Paine DC, Whitson T, Janiac D, Beresford R, Ow-Yang CW (1999) J Appl Phys 85:8445CrossRefGoogle Scholar
  11. 11.
    Muranaka S, Bando Y, Tanaka T (1987) Thin Solid Films 25:35Google Scholar
  12. 12.
    Muranaka S (1991) Jpn J Appl Phys 30:L2062CrossRefGoogle Scholar
  13. 13.
    De Beardemaeker J, Dauwe C, Deduytsche D, Detavernier C, Egger W, Sperr P (2004) Mater Sci Forum 445–446:69CrossRefGoogle Scholar
  14. 14.
    Song PK, Shigesato Y, Yasui I, Ow-Yang CW, Paine DC (1998) Jpn J Appl Phys 37:1870CrossRefGoogle Scholar
  15. 15.
    Oyama T, Hashimoto N, Shimazu J, Akao Y, Kojima H, Aikawa K, Suzuki K (1992) J Vac Sci Technol A 10:1682CrossRefGoogle Scholar
  16. 16.
    Sun XW, Huang HC, Kwok HS (1996) Appl Phys Lett 68:2663CrossRefGoogle Scholar
  17. 17.
    Thornton JA, Hoffman WD (1989) Thin Solid Films 171:5CrossRefGoogle Scholar
  18. 18.
    Bardos L, Libra M (1989) Vacuum 39:33CrossRefGoogle Scholar
  19. 19.
    Bender M, Katsarakis N, Gagaoudakis E, Hourdakis E, Douloufakis E, Cimalla V, Kiriakidis G (2001) J Appl Phys 90:5382CrossRefGoogle Scholar
  20. 20.
    Bertaut E (1968) In: International tables for x-ray crystallography, vol 3. Kynoch Press, Birmingham, p 318Google Scholar
  21. 21.
    Zhao L, Steinhart M, Yosef M, Lee SK, Geppert T, Pippel E, Scholz R, Gosele U, Schecht S (2005) Chem Mater 17:3CrossRefGoogle Scholar
  22. 22.
    Tahar RBH, Ban T, Ohya Y, Takahashi Y (1998) J Appl Phys 83:2631CrossRefGoogle Scholar
  23. 23.
    Adurodija FO, Bruning R, Asia IO, H Izumi, Ishihara T, Yoshioka H (2005) Appl Phys A 81:953CrossRefGoogle Scholar
  24. 24.
    Izumi H, Adurodija FO, Kaneyoshi H, Ishihara T, Yoshoika Y, Motoyama M (2002) J Appl Phys 91:1213CrossRefGoogle Scholar
  25. 25.
    Kim H, Gilmore C, Pique A, Horwitz JS, Matoussi H, Murata H, Kafifi ZH, Chrisey DB (1999) J Appl Phys 86:6451CrossRefGoogle Scholar
  26. 26.
    Kwok HS, Sun XW, Kim DH (1998) Thin Solid Films 335:229CrossRefGoogle Scholar
  27. 27.
    Adurodija FO, Izumi H, Ishihara T, Yoshioka Y, Matsui H, Motoyama M (1999) Appl Phys Lett 74:3059CrossRefGoogle Scholar
  28. 28.
    Yu Y, Maree CHM, Haglund RF Jr, Hamilton JD, Morales Paliza MA, Huang MB, Felman LC, Weller RA (1999) J Appl Phys 86:991CrossRefGoogle Scholar
  29. 29.
    Jung YS (2004) Thin Solid Films 467:36CrossRefGoogle Scholar
  30. 30.
    Martino M, Luches A, Fernandez M, Anobile P, Petruzzelli V (2001) J Phys D: Appl Phys 34:2606CrossRefGoogle Scholar
  31. 31.
    Losurdo M, Griangregorio M, Capezzuto P, Bruno G, De Rosa R, Roca F, Summonte C, Pla J, Rizzoli R (2002) J Vac Sci Tech A 20:37CrossRefGoogle Scholar
  32. 32.
    Chen RT, Robinson D (1992) Appl Phys Lett 60:1541CrossRefGoogle Scholar
  33. 33.
    Yeom HY, Popovich N, Chason E, Paine DC (2002) Thin Solid Films 411:17CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Frederick Ojo Adurodija
    • 1
  • Lynne Semple
    • 1
  • Ralf  Brüning
    • 1
  1. 1.Department of Physics Mount Allison UniversitySackvilleCanada

Personalised recommendations