Journal of Materials Science

, Volume 41, Issue 14, pp 4678–4683 | Cite as

Highly surfaced polypyrrole nano-networks and nano-fibers

  • Muge Acik
  • Canan Baristiran
  • Gursel SonmezEmail author


Polypyrrole (PPy) nano-networks and nano-fibers were synthesized using interfacial and template polymerization techniques, respectively. The morphology of the PPy nano-networks showed that a homogeneous, three-dimensionally grown nano-fibers were produced. Dodecyl sulfonate was used as surfactant in the interfacial polymerization. Bulk conductivity of PPy nano-networks were in a range of 10−1–10−4 S/cm with a surface area of ca. 480 m2/g. Template synthesis produced one-directional alignment of conducting nano-arrays for the purpose of possible applications of these materials in charge storage devices (i.e., supercapacitors) as electrode materials. Electrochemical and spectroelectrochemical investigations showed that these materials are promising for device applications.


Pyrrole Polycarbonate Membrane Polymerization Time Interfacial Polymerization Sodium Dodecyl Sulfonate 



Authors gratefully acknowledge Prof. Ahmet Sirkecioglu for BET measurements. Instrumentation for this research was partially funded by TUBITAK grand TBAG-AY/104T251.


  1. 1.
    Sonmez G, Schottland P, Zong K, Reynolds JR (2001) J Mater Chem 11:289CrossRefGoogle Scholar
  2. 2.
    Orgzall I, Lorenz B, Ting ST, Hor PH, Menon VP, Martin CR, Hochheimer HD (1996) Phys Rev B 54:6654CrossRefGoogle Scholar
  3. 3.
    Oh KW, Park HJ, Kim SH (2004) J Appl Polym Sci 91:3659CrossRefGoogle Scholar
  4. 4.
    Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Shirakawa H, Lewis EJ, McDiarmid AG, Chiang CK, Heeger AJ (1977) Chem Commun 578Google Scholar
  6. 6.
    Kros A, Nolte RJM, Sommerdijk NAJM (2002) Adv Mater 14:1779CrossRefGoogle Scholar
  7. 7.
    Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2005) J Am Chem Soc 127:496CrossRefGoogle Scholar
  8. 8.
    An KH, Jeong SY, Hwang HR, Lee YH (2004) Adv Mater 16:1005CrossRefGoogle Scholar
  9. 9.
    Hosono K, Matsubara I, Murayama N, Woosuck S, Izu N (2005) Chem Mater 17:349CrossRefGoogle Scholar
  10. 10.
    Kros A, Linhardt JG, Bowman HK, Tirrell DA (2004) Adv Mater 16:723CrossRefGoogle Scholar
  11. 11.
    Johnson BJS, Wolf JH, Zalusky AS, Hillmyer MA (2004) Chem Mater 16:2909CrossRefGoogle Scholar
  12. 12.
    Jager EWH, Inganäs O, Lundström I (2001) Adv Mater 13:76CrossRefGoogle Scholar
  13. 13.
    Faverolle F, Attias AJ, Bloch B, Audebert P, Andrieux CP (1998) Chem Mater 10:740CrossRefGoogle Scholar
  14. 14.
    Gregory RV, Kimbrell WC, Kuhn HH (1989) Synth Met 28:C823CrossRefGoogle Scholar
  15. 15.
    White A, Slade R (2004) Macromol Symp 212:275CrossRefGoogle Scholar
  16. 16.
    Rowley NM, Mortimer RJ (2002) Sci Prog 85:243CrossRefGoogle Scholar
  17. 17.
    Sides CR, Martin CR (2005) Adv Mater 17:1Google Scholar
  18. 18.
    Leclerc M (1999) Adv Mater 11:1491CrossRefGoogle Scholar
  19. 19.
    Skotheim TA (ed) (1986) Handbook of conducting polymers, vols I and II. Marcel Dekker, New YorkGoogle Scholar
  20. 20.
    Reece DA, Pringle JM, Ralph SF, Wallace GG (2005) Macromolecules 38:1616CrossRefGoogle Scholar
  21. 21.
    Pernaut JM, Reynolds JR (2000) J Phys Chem B 104:4080CrossRefGoogle Scholar
  22. 22.
    Stupnisek-Lisac E, Lencic D, Berkovic K (1992) Corrosion 48:924CrossRefGoogle Scholar
  23. 23.
    Iroh JO, Su W (2002) J Appl Polym Sci 85:2757CrossRefGoogle Scholar
  24. 24.
    Zhou XJ, Leung KT (2003) Macromolecules 36:2882CrossRefGoogle Scholar
  25. 25.
    Mecerreyes D, Alvaro V, Cantero I, Bengoetxea M, Calvo PA, Grande H, Rodriguez J, Pomposo JA (2002) Adv Mater 14:749CrossRefGoogle Scholar
  26. 26.
    Masalles C, Llop J, Viñas C, Teixidor F (2002) Adv Mater 14:826CrossRefGoogle Scholar
  27. 27.
    Ikegame M, Tajima K, Aida T (2003) Angew Chem Int Ed 42:2154CrossRefGoogle Scholar
  28. 28.
    He J, Chen W, Xu N, Li L, Li X, Xue G (2004) Appl Surf Sci 221:87CrossRefGoogle Scholar
  29. 29.
    Martin CR (1994) Science 266:1961CrossRefGoogle Scholar
  30. 30.
    Lu Y, Shi G, Li C, Liang Y (1998) J Appl Polym Sci 70:2169CrossRefGoogle Scholar
  31. 31.
    Zhang X, Manohar SK (2004) J Am Chem Soc 126:12714CrossRefGoogle Scholar
  32. 32.
    Yang Y, Liu J, Wan M (2002) Nanotechnology 13:771CrossRefGoogle Scholar
  33. 33.
    Huang J, Kaner RB (2004) J Am Chem Soc 126:851CrossRefGoogle Scholar
  34. 34.
    Huang J, Kaner RB (2004) Angew Chem 116:5941CrossRefGoogle Scholar
  35. 35.
    Huang J, Virgi S, Weiller BH, Kaner RB (2003) J Am Chem Soc 125:314CrossRefGoogle Scholar
  36. 36.
    Soudan P, Gaudet J, Guay D, Bélanger D, Schulz R (2002) Chem Mater 14:1210CrossRefGoogle Scholar
  37. 37.
    Menon VP, Lei J, Martin CR (1996) Chem Mater 8:2382CrossRefGoogle Scholar
  38. 38.
    Sonmez G, Sarac AS (2002) J Mater Sci 37:4609CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Faculty of Engineering & Natural Sciences, Chemistry ProgramSabanci UniversityIstanbulTurkey

Personalised recommendations