Advertisement

Journal of Materials Science

, Volume 42, Issue 3, pp 867–871 | Cite as

Sol–gel template synthesis of LiV3O8 nanowires

  • Xiaohong Liu
  • Jinqing Wang
  • Junyan Zhang
  • Shengrong YangEmail author
Article

Abstract

The LiV3O8 nanowires are fabricated by using sol–gel process with porous anodic aluminum oxide (AAO) as the template. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) characterizations show that the synthesized LiV3O8 nanowires are monodispersed and paralleled to one another. Selected area electron diffraction (SAED) pattern, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) investigations jointly demonstrate that the synthesized nanowires are most consisted of monoclinic phase LiV3O8. Since the LiV3O8 nanowires can be mass-produced by using this method, it is expected to find promising application as a new cathode material in lithium ion battery.

Keywords

Cathode Material Anodic Aluminum Oxide Anodic Aluminum Oxide Template Alumina Membrane Anodic Aluminum Oxide Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant No. 50375151, 50323007, and 50572107), 863 Plan (Grant No. 2002AA302609), and “Hundreds Talent Program” of Chinese Academy of Sciences for financial support.

References

  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Cui Y, Wei QQ, Park HK, Lieber CM (2001) Science 293:1289CrossRefGoogle Scholar
  3. 3.
    Huang Y, Duan X, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Science 294:1313CrossRefGoogle Scholar
  4. 4.
    Collins PG, Arnold MS, Avouris P (2001) Science 292:706CrossRefGoogle Scholar
  5. 5.
    Bachtold A, Hadley P, Nakanishi T, Dekker C, (2001) Science 294:1317CrossRefGoogle Scholar
  6. 6.
    Zhao WB, Zhu JJ, Chen HY (2003) J Crystal Growth 258:176CrossRefGoogle Scholar
  7. 7.
    Martin CR (1994) Science 266:1961CrossRefGoogle Scholar
  8. 8.
    Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Science 261:1316CrossRefGoogle Scholar
  9. 9.
    Nguyen PP, Pearson DH, Tonucci RJ, Babcock K (1998) J Electrochem Soc 145:247CrossRefGoogle Scholar
  10. 10.
    Routkevitch D, Tager AA, Haruyama J, Almawlawi D, Moskovits M, Xu JM (1996) IEEE Trans Electron Devices 43:1646CrossRefGoogle Scholar
  11. 11.
    Hulteen JC, Martin CR (1997) J Mater Chem 7:1075CrossRefGoogle Scholar
  12. 12.
    Masuda H, Yanagishita T, Yasui K, Nishio K, Yagi I, Rao TN, Fujishima A (2001) Adv Mater 13:247CrossRefGoogle Scholar
  13. 13.
    Martin CR (1994) Science 166:1961CrossRefGoogle Scholar
  14. 14.
    Martin CR (1995) Acc Chem Res 28:61CrossRefGoogle Scholar
  15. 15.
    Martin CR (1996) Chem Mater 8:1739CrossRefGoogle Scholar
  16. 16.
    Lakshmi BB, Dorhout PK, Martin CR (1997) Chem Mater 9:857CrossRefGoogle Scholar
  17. 17.
    Zhou Y, Li H (2002) J Solid State Chem 165:247CrossRefGoogle Scholar
  18. 18.
    Zhou YK, Shen CM, Huang JE, Li HL (2002) Mater Sci Eng B 95:77CrossRefGoogle Scholar
  19. 19.
    Zhou YK, Shen CM, Li HL (2002) Solid State Ionics 146:81CrossRefGoogle Scholar
  20. 20.
    Nassau K, Murphy DW (1981) J Non-Crystal Solid 44:297CrossRefGoogle Scholar
  21. 21.
    Dai JX, Li SFY, Gao ZQ, Siow KS (1998) J Electrochem Soc 14:3057CrossRefGoogle Scholar
  22. 22.
    Scrosati B, Selvaggi A, Croce F, Gang W (1988) J Power Sources 24:287CrossRefGoogle Scholar
  23. 23.
    Yu A, Kumagai N, Lee JY (1998) J Power Sources 74:297CrossRefGoogle Scholar
  24. 24.
    Kawakita J, Kato T, Katayama Y, Miura T, Kishi T (1999) J Power Sources 81–82:448CrossRefGoogle Scholar
  25. 25.
    Pistoia G, Pasquali M, Wang G, Li L (1990) J Electrochem Soc 137:2365CrossRefGoogle Scholar
  26. 26.
    Liu GQ, Zeng CL, Yang K (2002) Electrochim Acta 47:3239CrossRefGoogle Scholar
  27. 27.
    Xu HY, Wang H, Sang ZQ, Wang YH, Yan H, Yoshimura M (2004) Electrochim Acta 49:349CrossRefGoogle Scholar
  28. 28.
    Yang G, Wang G, Hou WH (2005) J Phys Chem B 109:11186CrossRefGoogle Scholar
  29. 29.
    Li XX, Cheng FY, Guo B, Chen J (2005) J Phy Chem B 109:14017CrossRefGoogle Scholar
  30. 30.
    Lin Y, Sun FQ, Yuan XY, Geng BY, Zhang LD (2003) Appl Phy A: Mater Sci Process 78:1197CrossRefGoogle Scholar
  31. 31.
    Hernandez BA, Chang KS, Fisher ER, Dorhout PK (2002) Chem Mater 14:480CrossRefGoogle Scholar
  32. 32.
    Mendialdua J, Casanova R, Barbaux Y (1995) J Electron Spectrosc 71:249CrossRefGoogle Scholar
  33. 33.
    Silversmit G, Depla D, Poelman H, Marin GB, Gryse RD (2004) J Electron Spectrosc 135:167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Xiaohong Liu
    • 1
    • 2
  • Jinqing Wang
    • 1
  • Junyan Zhang
    • 1
  • Shengrong Yang
    • 1
    Email author
  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of SciencesLanzhouChina
  2. 2.Graduate SchoolChinese Academy of ScienceBeijingChina

Personalised recommendations