Advertisement

Journal of Materials Science

, Volume 41, Issue 13, pp 4117–4121 | Cite as

Crystalline carbon nitride films prepared by microwave plasma chemical vapour deposition

  • Jinchun Jiang
  • Wenjuan Cheng
  • Yang Zhang
  • Hesun Zhu
  • Dezhong Shen
Article

Abstract

Crystalline carbon nitride films have been synthesized on Si (100) substrates by a microwave plasma chemical vapour deposition technique, using mixture of N2, CH4 and H2 as precursor. Scanning electron microscopy shows that the films consisted of hexagonal bars, tetragonal bars, rhombohedral bars, in which the bigger bar is about 20 μm long and 6 μm wide. The X-ray photoelectron spectroscopy suggests that nitrogen and carbon in the films are bonded through hybridized sp2 and sp3 configurations. The x-ray diffraction pattern indicates that the films are composed of α-, β-, pseudocubic and cubic C3N4 phase and an unidentified phase. Raman spectra also support the existence of α- and β-C3N4 phases. Vickers microhardness of about 41.9 GPa measured for the films.

Keywords

Raman Spectrum Vickers Microhardness Carbon Nitride Chemical Vapour Deposition Technique Plasma Sphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Y. LIU and M. L. COHEN, Science 245 (1989) 841.CrossRefGoogle Scholar
  2. 2.
    D. M. TETER and R. J. HEMLY, ibid. 271 (1996) 53.CrossRefGoogle Scholar
  3. 3.
    Y. J. GUO and W. A. GODDARD III, Chem. Phys. Lett. 237 (1995) 72.CrossRefGoogle Scholar
  4. 4.
    J. ORTEGA and O. F. SANKEY, Phys. Rev. B51 (1995) 2624.CrossRefGoogle Scholar
  5. 5.
    M. COTE and M. L. COHEN, ibid. B55 (1997) 5684.Google Scholar
  6. 6.
    C. NIU, Y. Z. LU and C. M. LIEBER, Science 261 (1993) 334.CrossRefGoogle Scholar
  7. 7.
    M. DIANI, A. MANSOUR, L. KUBLER, J. L. BISCHOFF and D. BOLMONT, Diam. Relat. Mater. 3 (1994) 264.CrossRefGoogle Scholar
  8. 8.
    A. HOFFMAN, I. GOUZMAN and R. BRENER, Appl. Phys. Lett. 64 (1994) 845.CrossRefGoogle Scholar
  9. 9.
    K. M. YU, M. L. COHEN, E. E. HALLER, W. L. HANSEN, A. Y. LIU and I. C. WU, Phys. Rev. B49 (1994) 5034.CrossRefGoogle Scholar
  10. 10.
    B. ENDERS, Y. HORINO, N. TSUBOUCHI, A. CHAYAHARA, A. KINOMURA and K. FUJII, Nucl. Instrum. Methods Phys. Res. B121 (1997) 73.CrossRefGoogle Scholar
  11. 11.
    Y. TANI, Y. AOI and E. KAMIJO, Appl. Phys. Lett. 73 (1998) 1652.CrossRefGoogle Scholar
  12. 12.
    E. G. WANG, Adv. Mater. 11 (1999) 1129.CrossRefGoogle Scholar
  13. 13.
    J. WEI, J. Appl. Phys. 89 (2001) 4099.CrossRefGoogle Scholar
  14. 14.
    Y. P. ZHANG, H. J. GAO and Y. S. GU, J. Phys. D: Appl. Phys. 34 (2001) 299.CrossRefGoogle Scholar
  15. 15.
    L. C. CHEN, D. M. BHUSARI, C. Y. YANG, K. H. CHEN, T. J. CHUANG, M. C. LIN, C. K. CHEN and Y. F. HUANG, Thin Solid Films 303 (1997) 66.CrossRefGoogle Scholar
  16. 16.
    D. MARTON, K. I. BOYD, A. H. ALBAYATI, S. S. TODORO and J. W. RABALAIS, Phys. Rev. Lett. 73 (1994) 118.CrossRefGoogle Scholar
  17. 17.
    S. MATSUMOTO, E. Q. XIE and F. IZUMI, Diam. Relat. Mater. 8 (1999) 1175.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Jinchun Jiang
    • 1
  • Wenjuan Cheng
    • 2
  • Yang Zhang
    • 3
  • Hesun Zhu
    • 3
  • Dezhong Shen
    • 3
  1. 1.Chemistry and Pharmaceutics InstituteEast China University of Science and TechnologyShanghaiChina
  2. 2.Department of PhysicsEast China Normal UniversityShanghaiChina
  3. 3.Institute of Functional Crystal and Film, Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations