Journal of Materials Science

, Volume 41, Issue 13, pp 4251–4258 | Cite as

Growth and characterization of partially oxidized platinum polymers in nanoscale templates

  • B. M. Anderson
  • S. K. HurstEmail author
  • L. Spangler
  • E. H. Abbott
  • P. Martellaro
  • P. J. Pinhero
  • E. S. Peterson


The polymerization capabilities and characteristics of the electrochemically prepared partially oxidized (PO) salts of the bis(oxalato)platinate(II) (Pt-Ox) and tetra(cyano)platinate(II) (Pt-CN) complexes were investigated via optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The polymers were synthesized in glass capillary templates at lengths of 900 mm, as well as through porous anodic alumina oxide (AAO) templates with pore diameters of 200 nm and 20 nm respectively. The average diameter of the unconstricted polymeric structures of PO Pt-Ox and PO potassium Pt-CN salts were found to be approximately 200 nm and 700 nm respectively. The PO Pt-Ox polymers, which are brittle in macroscale form when dehydrated, were found to possess significant flexibility on the nanoscale even after exposure to air for 2 months. During the electrochemical syntheses, the formation of the PO polymers could be directed by varying the positions and the number of electrodes. Growth of the polymers through AAO templates, caused further reduction in the diameter of the nanoscopic polymers. TEM analysis observed polymeric strands having diameters ranging from 3 nm to 5 nm and containing approximately 30 individual anionic chains. A new PO guanidinium (Guan) containing Pt-Ox complex, (Guan)1.61Pt(C2O4)2·H2O, was synthesized and characterized.


Capillary Tube Partially Oxidize Electrochemical Synthesis Linear Chain Polymer Anodic Alumina Oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. WU, J. XIANG, C. YANG, W. LU and C. M. LIEBER, Nature 430 (2004) 61.CrossRefGoogle Scholar
  2. 2.
    C. N. R. RAO, F. L. DEEPAK, G. GUNDIAH and A. GOVINDARAJ, Prog. Solid State Chem. 31 (2003) 5.CrossRefGoogle Scholar
  3. 3.
    Y. Y. WU, H. Q. YAN, M. HUANG, B. MESSER, J. H. SONG and P. D. YANG, Chem.-Eur. J. 8 (2002) 1261.Google Scholar
  4. 4.
    A. W. ZHAO, C. H. YE, G. W. MENG, L. D. ZHANG and P. M. AJAYAN, J. Mater. Res. 18 (2003) 2318.CrossRefGoogle Scholar
  5. 5.
    S. K. HURST, E. H. ABBOTT, L. SPANGLER and E. S. PETERSON, Inorg. Chim. Acta 358 (2005) 173.CrossRefGoogle Scholar
  6. 6.
    S. K. HURST, D. W. MCDONALD, L. H. SPANGLER, E. H. ABBOTT and E. S. PETERSON, Synth. Met. (2005) Manuscript in preparation.Google Scholar
  7. 7.
    H. G. SODERBAUM, Bull. Soc. Chim. 45 (1886) 188.Google Scholar
  8. 8.
    H. G. SODERBAUM, Chem. Ber. 21 (1888) 567C.CrossRefGoogle Scholar
  9. 9.
    K. KROGMANN, Angew. Chem. Int. Ed. Engl. 3 (1964) 147.Google Scholar
  10. 10.
    K. KROGMANN and P. DODEL, Chem. Ber. 99 (1966) 3402.CrossRefGoogle Scholar
  11. 11.
    J. S. MILLER, Science 194 (1976) 189.CrossRefGoogle Scholar
  12. 12.
    J. M. WILLIAMS, in “Inorganic Syntheses”, (John Wiley & Sons, 1982), Vol. 21 pp. 141–142.Google Scholar
  13. 13.
    J. M. WILLIAMS, A. J. SCHULTZ, A. E. UNDERHILL and K. CARNEIRO, in “Extended Linear Chain Compounds”, edited by, J. S. Miller, (Plenum, New York, 1983), Vol. 1 pp. 73–118.Google Scholar
  14. 14.
    A. E. UNDERHILL, M. MIZUNO and D. M. WATKINS, Mol. Cryst. Liq. Cryst. 81 (1982) 935.Google Scholar
  15. 15.
    A. E. UNDERHILL, D. M. WATKINS, J. M. WILLIAMS and K. CARNEIRO, in “Extended Linear Chain Compounds”, edited by J. S. Miller (Plenum, New York, 1983), Vol. 1 pp. 119–156.Google Scholar
  16. 16.
    H. CHIK and J. M. XU, Mater. Sci. Eng. R-Rep. 43 (2004) 103.CrossRefGoogle Scholar
  17. 17.
    Z. T. ZHANG, D. A. BLOM and S. DAI, in “Nanoporous Materials III”, (Elsevier Science BV, Amsterdam, 2002), Vol. 141 pp. 183–188.Google Scholar
  18. 18.
    P. V. ADHYAPAK, P. KARANDIKAR, K. VIJAYAMOHANAN, A. A. ATHAWALE and A. J. CHANDWADKAR, Mater. Lett. 58 (2004) 1168.CrossRefGoogle Scholar
  19. 19.
    K. J. ZIEGLER, B. POLYAKOV, J. S. KULKARNI, T. A. CROWLEY, K. M. RYAN, M. A. MORRIS, D. ERTS and J. D. HOLMES, J. Mater. Chem. 14 (2004) 585.CrossRefGoogle Scholar
  20. 20.
    Y. ZHAO, Y. G. GUO, Y. L. ZHANG and K. JIAO, Phys. Chem. Chem. Phys. 6 (2004) 1766.CrossRefGoogle Scholar
  21. 21.
    S. A. KNAACK, M. REDDEN and M. ONELLION, Am. J. Phys. 72 (2004) 856.CrossRefGoogle Scholar
  22. 22.
    C. J. BRUMLIK and C. R. MARTIN, J. Am. Chem. Soc. 113 (1991) 3174.CrossRefGoogle Scholar
  23. 23.
    J. M. WILLIAMS, Adv. Inorg. Chem. 26 (1983) 235.CrossRefGoogle Scholar
  24. 24.
    P. J. MARTELLARO and E. H. ABBOTT, Inorg. Chem. 39 (2000) 1878.CrossRefGoogle Scholar
  25. 25.
    K. KROGMANN and P. DODEL, Chem. Ber. 99 (1966) 3408.CrossRefGoogle Scholar
  26. 26.
    D. M. WATKINS, A. E. UNDERHILL and C. S. JACOBSEN, J. Phys. Chem. Solids. 43 (1982) 183.CrossRefGoogle Scholar
  27. 27.
    A. J. SCHULTZ, A. E. UNDERHILL and J. M. WILLIAMS, Inorg. Chem. 17 (1978) 1313.CrossRefGoogle Scholar
  28. 28.
    J. S. MILLER, Inorg. Synth. 19 (1979) 13.Google Scholar
  29. 29.
    G. D. STUCKY, C. PUTNIK, J. KELBER, M. J. SCHAFFMAN, M. B. SALAMON, G. PASQUALI, A. J. SCHULTZ, J. M. WILLIAMS, T. F. CORNISH, D. M. WASHECHECK and P. L. JOHNSON, Ann. N.Y. Acad. Sci. 313 (1978) 525.CrossRefGoogle Scholar
  30. 30.
    K. SAKAI, N. AKIYAMA, M. MIZOTA, K. YOKOKAWA and Y. YOKOYAMA, Acta Crystallogr. Sect. E.-Struct Rep. Online 59 (2003) M408.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • B. M. Anderson
    • 1
  • S. K. Hurst
    • 2
    Email author
  • L. Spangler
    • 2
  • E. H. Abbott
    • 2
  • P. Martellaro
    • 2
  • P. J. Pinhero
    • 3
  • E. S. Peterson
    • 3
  1. 1.Department of ChemistryVanderbilt UniversityNashvilleUSA
  2. 2.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA
  3. 3.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations