Advertisement

Journal of Materials Science

, Volume 41, Issue 2, pp 383–388 | Cite as

The influence of residual stresses implicated via cure volume shrinkage on CF/VEUH—composites

  • Patrick Rosso
  • Bodo Fiedler
  • Klaus Friedrich
  • Karl Schulte
Article

Abstract

This paper presents a thermal finite element analysis (FEA) of a unidirectional carbon fibre reinforced vinylester urethane hybrid matrix system. The evolution of the thermal residual stresses due to the mismatch in the coefficient of thermal expansion (CTE) of the single components in the cooling phase have been investigated. Additionally, the cure volume shrinkage was implemented into the FE-model. The model allows the transition of the homogeneous unidirectional composite material properties on a microscopic spot, where the properties of the fibres and the matrix can be considered separately. It could be shown, that the cure volume shrinkage (CVS) has a dramatic effect on the fibre/matrix interface region due to radial compression stresses along the fibre. Further, this may lead to microcracking or fibre/matrix debonding before any kind of load is applied to the material.

Keywords

Residual Stress Thermal Expansion Finite Element Analysis Carbon Fibre Urethane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. ROSSO and K. VARADI, “FE macro/micro analysis of thermal residual stresses and failure behaviour under transverse tensile load of VE/CF—Fibre bundle composites,” Composites Science and Technology, accepted in January 2005.Google Scholar
  2. 2.
    L. XU, T. MASE and L. DRZAL, “Influence of cure volume shrinkage of the matrix resin on the adhesion between carbon fiber and vinyl ester resin,” in Proceedings of 14th International Conference on Composite Materials ICCM-14 (San Diego, California, USA 2003) (on CD-ROM).Google Scholar
  3. 3.
    S. WIJSKAMP, R. AKKERMAN and E. A. D. LAMERS, “Residual stresses in non-symmetrical carbon/epoxy laminates,” Proceedings of 14th International Conference on Composite Materials ICCM-14 (San Diego, California, USA 2003) (on CD-ROM).Google Scholar
  4. 4.
    C. LI, M. HOJJATI, A. JOHNSTON, K. C. COLE, D. DJOKIC and P. LEE-SULLIVAN, “Residual stress modelling in composite patch repairs employing a cure kinetics model with diffusion control,” in Proceedings of 14th International Conference on Composite Materials ICCM-14 (San Diego, California, USA, 2003) (on CD-ROM).Google Scholar
  5. 5.
    B. FIEDLER, M. HOJO, S. OCHIAI, K. SCHULTE and M. OCHI, “Finite-element modeling of initial matrix failure in CFRP under static transverse tensile load,” Comp. Sci. Tech. 61 (2001) 95.CrossRefGoogle Scholar
  6. 6.
    B. FIEDLER, M. HOJO and S. OCHIAI, “The influence of thermal residual stresses on the transverse strength of CFRP using FEM,” Composites: Part A 33 (2002) 1323.CrossRefGoogle Scholar
  7. 7.
    K. M. NELSON, P. D. PUGLIANO and R. COURDJI, “Predicting residual stresses in composites,” in Proceedings of 14th International Conference on Composite Materials ICCM-14 (San Diego, California, USA, 2003) (on CD-ROM).Google Scholar
  8. 8.
    M. S. MADHUKAR and B. FRANKS, “A new method to characterize stiffness in polymers,” Proceedings of 14th International Conference on Composite Materials ICCM-14, (San Diego, California, USA, 2003) (on CD-ROM).Google Scholar
  9. 9.
    J. A. NAIRN, “Fracture mechanics of composites with residual thermal stresses,” J. Appl. Mech. 64 (1997) 804.CrossRefGoogle Scholar
  10. 10.
    K. JAYARAMAN and K. L. REIFSNIDER, “The interphase in unidirectional fiber-reinforced epoxies: effect on residual thermal stresses,“ Comp. Sci. Tech. 47 (1993) 119.CrossRefGoogle Scholar
  11. 11.
    M. A. STONE, I. F. SCHWARTZ and H. D. Chandler, “Residual stresses associated with post-cure shrinkage in GRP tubes,” ibid. 57 (1997) 47.CrossRefGoogle Scholar
  12. 12.
    B. ANDERSSON, A. SJÖ;GREN and L. BERGLUND, “Micro- and meso-level residual stresses in glass-fiber/vinyl ester composites,” ibid. 60 (2000) 2011.CrossRefGoogle Scholar
  13. 13.
    C. WONDERLY, J. GRENESTEDT, G. FERNLUND and E. CEPUS, “Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites,” Comp. Enging.: Part B 36 (2005) 417.Google Scholar
  14. 14.
    P. ROSSO and K. FRIEDRICH, “Characterisation of different carbon fibre surface treatments and its effects on the interfacial failure behaviour of VEH-model composites,” Plastics, Rubber and Composites 31 (2002) 134.CrossRefGoogle Scholar
  15. 15.
    P. ROSSO, K. FRIEDRICH, C. LENZ and L. YE, “Effects of vinylester—Modification on the mechanical and interfacial properties of their carbon fibre reinforced—composites,” submitted to Composites Part A in October 2004.Google Scholar
  16. 16.
    C. C. CHAMIS, “Simplified composite micromechanics equations for hygral, thermal and mechanical properties,” SAMPE Quarterly (1984), 14.Google Scholar
  17. 17.
    N. JOST, VERNETZUNG und Chemorheologie von Duromeren mit hybrider und interpenetrierender Struktur (PhD-Thesis); edited by Prof. Dr.-Ing. Alois K. Schlarb, ISBN-3-934930-39-5, Kaiserslautern, 2004.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Patrick Rosso
    • 1
  • Bodo Fiedler
    • 2
  • Klaus Friedrich
    • 1
  • Karl Schulte
    • 2
  1. 1.Institut für Verbundwerkstoffe GmbHTechnical University KaiserslauternKaiserslauternGermany
  2. 2.Polymer/Composite SectionTechnical University Hamburg-HarburgHamburgGermany

Personalised recommendations