Advertisement

Journal of Materials Science

, Volume 41, Issue 2, pp 517–523 | Cite as

Fabrication and characterization of Ag-SiO2 composite hollow nanospheres

  • Li-Min Xu
  • Jie-Xin Wang
  • Li-Xiong Wen
  • Jian-Feng Chen
Article

Abstract

Ag-SiO2 composite hollow nanospheres were synthesized by impregnation of hollow silica nanospheres (HSNSs), which were prepared by templating CaCO3 nanoparticles, in [Ag(NH3)2]NO3 aqueous solution followed by heat treatment. The straightforward process generates composite materials containing Ag nanoparticles, with the average size of 6–10 nm in diameter, uniformly dispersed and mainly distributed on the shells or between the spaces of the HSNSs. The Ag-supported HSNSs were characterized through TEM, EDS, and XPS. Furthermore, ASS, XRD and UV-Vis analyses demonstrated that higher loading efficiency could be achieved under the optimum loading conditions of a silver precursor solution of 0.08 M, pH = 9.0 and HSNSs with a BET surface area of 830.4 m2/g.

Keywords

Polymer Aqueous Solution Heat Treatment Composite Material CaCO3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. MATHLOWITZ, J. S. JACOB, Y. S. JONG, G. P. CARINO, D. E. CHICKERING, P. CHATURVEDL, C. A. SANTOS, K. VIJAYARAGHAVAN, S. MONTGOMERY, M. BASSETT and C. MORRELL, Nature 386 (1997) 410.CrossRefGoogle Scholar
  2. 2.
    H. HUANG and E. E. REMSEN, J. Am. Chem. Soc. 121 (1999) 3805.CrossRefGoogle Scholar
  3. 3.
    P. D. YANG, D. Y. ZHAO, B. F. CHMELKA and G. D. STUCKY, Chem. Mater. 10 (1998) 1033.Google Scholar
  4. 4.
    H. RINGSDORF, B. SCHLARB and J. VENZMER, Angew. Chem. Int. Ed. Engl. 27 (1998) 113.CrossRefGoogle Scholar
  5. 5.
    F. CARUSO, R. A. CARUSO and H. MÖHWALD, Science 282 (1998) 1111.CrossRefGoogle Scholar
  6. 6.
    B. MDISCHER, Y. Y. WON, D. S. EGE, J. C. M. LEE, F. S. BATES, D. E. DISCHER and D. A. HAMMER, ibid. 284 (1999) 1143.CrossRefGoogle Scholar
  7. 7.
    M. S. WENDLAND and S. C. ZIMMERMAN, J. Am. Chem. Soc. 121 (1999) 1389.CrossRefGoogle Scholar
  8. 8.
    F. CARUSO, X. Y. SHI, R. A. CARUSO and A. SUSHA, Adv. Mater. 13 (2001) 740.CrossRefGoogle Scholar
  9. 9.
    B. BOURLINOS, M. A. KARAKASSIDES and D. PETRIDIS, Chem. Comm. 16 (2001) 1518.CrossRefGoogle Scholar
  10. 10.
    Z. X. WEI and M. X. WAN, Adv. Mater. 18 (2002) 1314.CrossRefGoogle Scholar
  11. 11.
    D. B. ZHANG, L. M. QI, J. M. MA and H. M. CHENG, ibid. 20 (2002) 1499.CrossRefGoogle Scholar
  12. 12.
    C. E. FOWLER, D. D. KHUSHALANI and S. MANN, Chem. Comm. 19 (2001) 2028.CrossRefGoogle Scholar
  13. 13.
    H. T. SCHMIDT and A. E. OSTAFIN, Adv. Mater. 14 (2002) 532.CrossRefGoogle Scholar
  14. 14.
    D. WALSH, B. LEBEAU and S. MANN, ibid. 11 (1999) 324.CrossRefGoogle Scholar
  15. 15.
    S. W. KIM, M. KIM, W. Y. LEE and T. HYEON, J. Am. Chem. Soc. 124 (2002) 7642.CrossRefGoogle Scholar
  16. 16.
    Y. G. SUN, B. MAYERS and Y. N. XIA, Adv. Mater. 15 (2003) 641.CrossRefGoogle Scholar
  17. 17.
    J. X. HUANG, Y. XIE, B. LI, Y. LIU, Y. T. QIAN and S. Y. ZHANG, ibid. 11 (2000) 808.CrossRefGoogle Scholar
  18. 18.
    A. B. R. MAYER, W. GREBRIER and R. WANNEMACHER, J. Phys. Chem. B 104 (2000) 7278.CrossRefGoogle Scholar
  19. 19.
    A. DOLEV, G. E. SHTER and G. S. GRADER, J. Catal. 214 (2003) 146.CrossRefGoogle Scholar
  20. 20.
    K. C. PARK and S. K. IHM, Appl. Catal. A-Gen 203 (2000) 201.CrossRefGoogle Scholar
  21. 21.
    D. BABONNEAU, T. CABIOCH, A. NAUDON, J. C. GIRARD and M. F. DENANOT, Surf. Sci. 409 (1998) 358.CrossRefGoogle Scholar
  22. 22.
    V. HORNEBECQ, M. ANTONIETTI, T. CARDINAL and M. T. DELAPIERRE, Chem. Mater. 15 (2003) 1993.CrossRefGoogle Scholar
  23. 23.
    M. FERRARI, L. M. GRATTON, A. MADDALENA, M. MONTAGNA and C. TOSELLO, J. Non-Cryst. Solids 191 (1995) 101.CrossRefGoogle Scholar
  24. 24.
    M. KAWASHITA, S. TSUNEYAMA, F. MIYAJI, T. KOKUBO, H. KOZUKA and K. YAMAMOTO, Biomaterials 21 (2000) 393.CrossRefGoogle Scholar
  25. 25.
    J. F. CHEN, Y. H. WANG, F. GUO, X. M. WANG and C. ZHENG, Ind. Eng. Chem. Res. 39 (2000) 948.CrossRefGoogle Scholar
  26. 26.
    J. F. CHEN, J. X. WANG, R. J. LIU, L. SHAO and L. X. WEN, Inorg. Chem. Comm. 7 (2004) 447.CrossRefGoogle Scholar
  27. 27.
    J. X. WANG, L. X. WEN, Z. H. WANG, M. WANG, L. SHAO and J. F. CHEN, Scripta Mater. 51 (2004) 1035.CrossRefGoogle Scholar
  28. 28.
    J. P. BRUNELLE, Pure Appl. Chem. 50 (1978) 1211.CrossRefGoogle Scholar
  29. 29.
    P. V. BRAUN and S. I. STUPP, Mater. Res. Bull. 34 (1999) 463.CrossRefGoogle Scholar
  30. 30.
    H. ITOIGAWA, T. KAMIYAMA and Y. J. NAKAMURA, Non-Cryst. Solids 220 (1997) 210.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Li-Min Xu
    • 1
  • Jie-Xin Wang
    • 2
  • Li-Xiong Wen
    • 1
  • Jian-Feng Chen
    • 3
  1. 1.Key Lab for Nanomaterials, Ministry of EducationBeijing University of Chemical TechnologyBeijingPeople's Republic of China
  2. 2.Research Center of the Ministry of Education for High Gravity Engineering and TechnologyBeijing University of Chemical TechnologyBeijingPeople's Republic of China
  3. 3.Key Lab for Nanomaterials, Ministry of Education and Research Center of the Ministry of Education for High Gravity Engineering and TechnologyBeijing University of Chemical TechnologyBeijingPeople's Republic of China

Personalised recommendations