Journal of Mathematical Imaging and Vision

, Volume 61, Issue 9, pp 1322–1328 | Cite as

Critical Loci for Two Views Reconstruction as Quadratic Transformations Between Images

  • Marina BertoliniEmail author
  • Luca Magri
  • Cristina Turrini


In this paper, the effect of the existence of a critical set for the projective reconstruction of a scene in \({{\mathbb {P}}}^{3}\) from two views is analyzed directly on the image planes. Corresponding points, which are images of critical points, are linked by a birational map between the two planes which is a quadratic transformation. This transformation is explicitly described and used to investigate the instability phenomena for reconstruction with a new approach.


Critical loci Two views projection Quadratic transformation Epipolar geometry 



  1. 1.
    Beltrametti, M., Carletti, E., Gallarati, D.: Lectures on Curves. Surfaces and Projective Varieties: A Classical View of Algebraic Geometry. EMS Textbooks in Mathematics, vol. 9. European Mathematical Society, Zürich (2009) CrossRefGoogle Scholar
  2. 2.
    Bertolini, M., Besana, G.M., Turrini, C.: Instability of projective reconstruction from 1-view near critical configurations in higher dimensions. In: Alberto, C., Juan, M., Claudia, P. (eds.) Algebra Geometry and their Interactions. Contemporary Mathematics, vol. 448, pp. 1–12 (2007)Google Scholar
  3. 3.
    Bertolini, M., Besana, G.M., Turrini, C.: Instability of projective reconstruction of dynamic scenes near critical configurations. In: Proceedings of the International Conference on Computer Vision, ICCV (2007)Google Scholar
  4. 4.
    Bertolini, M., Besana, G.M., Turrini, C.: Applications of multiview tensors in higher dimensions. In: Aja-Fernández, S., de Luis Garcia, R., Tao, D., Li, X. (eds.) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, Berlin (2009) zbMATHGoogle Scholar
  5. 5.
    Bertolini, M., Besana, G.M., Turrini, C.: Critical loci for projective reconstruction from multiple views in higher dimension: a comprehensive theoretical approach. Linear Algebra Appl. 469, 335–363 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bertolini, M., Notari, R., Turrini, C.: The Bordiga surface as critical locus for 3-view reconstructions. J. Symb. Comput. 91, 74–97 (2017). (Special Issue MEGA) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bertolini, M., Turrini, C.: Critical configurations for 1-view in projections from \({\mathbb{P}}^{k} \rightarrow {\mathbb{P}}^{2}\). J. Math. Imaging Vis. 27, 277–287 (2007)CrossRefGoogle Scholar
  8. 8.
    Buchanan, T.: The twisted cubic and camera calibration. Comput. Vis. Graph. Image Process. 42, 130–132 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2012). CrossRefzbMATHGoogle Scholar
  10. 10.
    Faugeras, O.: Three-Dimensional Computer Vision. A Geometric Viewpoint. MIT Press, Cambridge (1993)Google Scholar
  11. 11.
    Hartley, R., Kahl, F.: Critical configurations for projective reconstruction from multiple views. Int. J. Comput. Vis. 71(1), 5–47 (2007)CrossRefGoogle Scholar
  12. 12.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003). (With a foreword by Olivier Faugeras)zbMATHGoogle Scholar
  13. 13.
    Hudson, H.P.: Cremona Transformation in Plane and Space. Cambridge University Press, Cambridge (1927)zbMATHGoogle Scholar
  14. 14.
    Krames, J.: Zur ermittlung eines objectes aus zwei perspectiven (ein beitrag zur theorie der gefhrlichen rter). Monatsh. Math. Phys. 49, 327–354 (1940)CrossRefGoogle Scholar
  15. 15.
    Maybank, S.: Theory of Reconstruction from Image Motion. Springer, Secaucus (1992)zbMATHGoogle Scholar
  16. 16.
    Semple, J.G., Kneebone, G.T.: Algebraic Projective Geometry. Oxford University Press, Oxford (1952)zbMATHGoogle Scholar
  17. 17.
    Sturm, P.: Critical motion sequences for the self-calibration of cameras and stereo systems with variable focal length. Image Vis. Comput. 20, 415–426 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica “F. Enriques”Università degli Studi di MilanoMilanItaly
  2. 2.Dipartimento Politecnico di Ingegneria e ArchitetturaUdineItaly

Personalised recommendations