Journal of Mathematical Imaging and Vision

, Volume 61, Issue 7, pp 1022–1036 | Cite as

Robust Model Selection in 2D Parametric Motion Estimation

  • Patrick BouthemyEmail author
  • Bertha Mayela Toledo Acosta
  • Bernard Delyon


Parametric motion models are commonly used in image sequence analysis for different tasks. A robust estimation framework is usually required to reliably compute the motion model over the estimation support in the presence of outliers, while the choice of the right motion model is also important to properly perform the task. However, dealing with model selection within a robust estimation setting remains an open question. We define two original propositions for robust motion-model selection. The first one is an extension of the Takeuchi information criterion. The second one is a new paradigm built from the Fisher statistic. We also derive an interpretation of the latter as a robust Mallows’ \(C_P\) criterion. Both robust motion-model selection criteria are straightforward to compute. We have conducted a comparative objective evaluation on computer-generated image sequences with ground truth, along with experiments on real videos, for the parametric estimation of the 2D dominant motion in an image due to the camera motion. They demonstrate the interest and the efficiency of the proposed robust model-selection methods.


Robust model selection Parametric motion estimation Image sequence 



This work was supported in part by Conacyt grant for Bertha Mayela Toledo Acosta’s thesis. The authors thank Fabien Spindler for the video acquisitions with the robotic setup.


  1. 1.
    Agostinelli, C.: Robust model selection in regression via weighted likelihood methodology. Stat. Probab. Lett. 56, 289–300 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ayer, S., Sawhney, H.S.: Layered representation of motion video using robust maximum likelihood estimation of mixture models and MDL encoding. In: ICCV, Cambridge (1995)Google Scholar
  4. 4.
    Basset, A., Bouthemy, P., Kervrann, C.: Recovery of motion patterns and dominant paths in videos of crowded scenes. In: ICIP, Paris (2014)Google Scholar
  5. 5.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)CrossRefGoogle Scholar
  6. 6.
    Bouthemy, P., Toledo Acosta, B.M., Delyon, B.: Robust selection of parametric motion models in image sequences. In: ICIP, Phoenix (2016)Google Scholar
  7. 7.
    Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer, Berlin (2002)zbMATHGoogle Scholar
  8. 8.
    Cremers, D., Soatto, S.: Motion competition: a variational approach to piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005)CrossRefGoogle Scholar
  9. 9.
    Fauvet, B., Bouthemy, P., Gros, P., Spindler, F.: A geometrical key-frame selection method exploiting dominant motion estimation in video. In: CVIR, Dublin (2004)Google Scholar
  10. 10.
    Fortun, D., Bouthemy, P., Kervrann, C.: Optic flow modeling and computation: a survey. Comput. Vis. Image Underst. 134, 1–21 (2015)CrossRefGoogle Scholar
  11. 11.
    François, E., Bouthemy, P.: Derivation of qualitative information in motion analysis. Image Vis. Comput. J. 8(4), 279–287 (1990)CrossRefGoogle Scholar
  12. 12.
    Gheissari, N., Bab-Hadiashar, A.: Motion analysis: model selection and motion segmentation. In: ICIAP, Mantova (2003)Google Scholar
  13. 13.
    Gheissari, N., Bab-Hadiashar, A.: A comparative study of model selection criteria for computer vision applications. Image Vis. Comput. 26(12), 1636–1649 (2008)CrossRefGoogle Scholar
  14. 14.
    Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least squares. Commun. Stat. Theory Methods 6(9), 813–827 (1977)CrossRefzbMATHGoogle Scholar
  15. 15.
    Huber, P.J.: Robust Statistics. Wiley Series in Probability and Statistics. Wiley, Hoboken (1981)Google Scholar
  16. 16.
    Jain, M., van Gemert, J., Jégou, H., Bouthemy, P., Snoek, C.G.M.: Tubelets: unsupervised action proposals from spatiotemporal super-voxels. Int. J. Comput. Vis. 124(3), 287–311 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kanatani, K.: Geometric information criterion for model selection. Int. J. Comput. Vis. 26(3), 171–189 (1998)CrossRefGoogle Scholar
  18. 18.
    Kanatani, K.: Model selection for geometric inference. In: ACCV, Melbourne (2002)Google Scholar
  19. 19.
    Konishi, S., Kitagawa, G.: Information Criteria and Statistical Modeling. Springer Series in Statistics. Springer, Berlin (2008)zbMATHGoogle Scholar
  20. 20.
    Kuss, M.: Gaussian process models for robust regression, classification, and reinforcement learning. Ph.D. Thesis manuscript, TU Darmstadt, March 2006Google Scholar
  21. 21.
    Machado, J.A.F.: Robust model selection and M-estimation. Econom. Theory 9, 478–493 (1993)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Magri, L., Fusiello, A.: T-linkage: a continuous relaxation of J-linkage for multi-model fitting. In: CVPR, Columbus (2014)Google Scholar
  23. 23.
    Mallows, C.: Some comments on Cp. Technometrics 15, 661–675 (1973)zbMATHGoogle Scholar
  24. 24.
    Marsland, S., Twining, C.J., Taylor, C.J.: A minimum description length objective function for groupwise non-rigid image registration. Image Vis. Comput. 26(3), 333–346 (2008)CrossRefGoogle Scholar
  25. 25.
    Matsushita, Y., Ofek, E., Ge, W., Tang, X., Shum, H.-Y.: Full-frame video stabilization with motion inpainting. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1150–1163 (2006)CrossRefGoogle Scholar
  26. 26.
    Meer, P.: Robust techniques for computer vision. In: Medioni, G., Kang, S.B. (eds.) Emerging Topics in Computer Vision, pp. 107–190. Prentice Hall, Upper Saddle River (2004)Google Scholar
  27. 27.
    Meyer, F., Bouthemy, P.: Estimation of time-to-collision maps from first order motion models and normal flows. In: ICPR, The Hague (1992)Google Scholar
  28. 28.
    Müller, S., Welsh, A.H.: Outlier robust model selection in linear regression. J. Am. Stat. Assoc. 100(472), 1297–1310 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Odobez, J.-M., Bouthemy, P.: Robust multiresolution estimation of parametric motion models. J. Vis. Commun. Image Represent. 6(4), 348–369 (1995)CrossRefGoogle Scholar
  30. 30.
    Perez Rua, J.M., Basset, A., Bouthemy, P.: Detection and localization of anomalous motion in video sequences from local histograms of labeled affine flows. Front. ICT Comput. Image Anal. (2017).
  31. 31.
    Qian, G., Künsch, H.R.: On model selection via stochastic complexity in robust linear regression. J. Stat. Plan. Inference 75, 91–116 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)CrossRefzbMATHGoogle Scholar
  33. 33.
    Ronchetti, E.: Robust model selection in regression. Stat. Probab. Lett. 3, 21–23 (1985)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ronchetti, E., Staudte, R.G.: A robust version of Mallows’s Cp. J. Am. Stat. Assoc. 89(426), 550–559 (1994)zbMATHGoogle Scholar
  35. 35.
    Roussas, G.G.: A Course in Mathematical Statistics. Academic Press, Cambrdige (1997)zbMATHGoogle Scholar
  36. 36.
    Saleh, S.: Robust AIC with high breakdown scale estimate. J. Appl. Math., Article ID 286414 (2014)Google Scholar
  37. 37.
    Schindler, K., Suter, D., Wang, H.: A model-selection framework for multibody structure-and-motion of image sequences. Int. J. Comput. Vis. 79, 159–177 (2008)CrossRefGoogle Scholar
  38. 38.
    Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Senst, T., Eiselen, V., Sikora, T.: Robust local optical flow for feature tracking. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1377–1387 (2012)CrossRefGoogle Scholar
  40. 40.
    Späth, H.: Mathematical Algorithms for Linear Regression. Academic Press, Cambridge (1992)zbMATHGoogle Scholar
  41. 41.
    Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends Comput. Graph. Comput. Vis. 2(1), 1–104 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tennakoon, R.B., Bab-Hadiashar, A., Cao, Z., Hoseinnezhad, R., Suter, D.: Robust model fitting using higher than minimal subset sampling. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 350–362 (2016)CrossRefGoogle Scholar
  43. 43.
    Tepper, M., Sapiro, G.: Nonnegative matrix underapproximation for robust multiple model fitting. In: CVPR, Honolulu (2017)Google Scholar
  44. 44.
    Torr, P.: An assessment of information criteria for motion model selection. In: CVPR, San Juan (1997)Google Scholar
  45. 45.
    Tran, Q.-H., Chin, T.-J., Carneiro, G., Brown, M.S., Suter, D.: In defence of RANSAC for outlier rejection in deformable registration. In: ECCV, Firenze (2012)Google Scholar
  46. 46.
    Tu, S., Xu, L.: A theoretical investigation of several model selection criteria for dimensionality reduction. Pattern Recognit. Lett. 33(9), 1117–1126 (2012)CrossRefGoogle Scholar
  47. 47.
    Veit, T., Cao, F., Bouthemy, P.: An a contrario decision framework for region-based motion detection. Int. J. Comput. Vis. 68(2), 163–178 (2006)CrossRefGoogle Scholar
  48. 48.
    Waxman, A.M., Kamgar-Parsi, B., Subbarao, M.: Closed-form solutions to image flow equations for 3D structure and motion. Int. J. Comput. Vis. 1, 239–258 (1987)CrossRefGoogle Scholar
  49. 49.
    Wechsler, H., Duric, Z., Li, F., Cherkassky, V.: Motion estimation using statistical learning theory. IEEE Trans. Pattern Anal. Mach. Intell. 26(4), 466–478 (2004)CrossRefGoogle Scholar
  50. 50.
    Yang, J., Li, H.: Dense, accurate optical flow estimation with piecewise parametric model. In: CVPR, Boston (2015)Google Scholar
  51. 51.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)CrossRefGoogle Scholar
  52. 52.
    Zaragoza, J., Chin, T.-J., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving DLT. In: CVPR, Columbus (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre Rennes - Bretagne AtlantiqueInriaRennes CedexFrance
  2. 2.IRMARUniversity of Rennes 1Rennes CedexFrance

Personalised recommendations