Advertisement

Journal of Mathematical Imaging and Vision

, Volume 61, Issue 7, pp 944–966 | Cite as

On High-Resolution Adaptive Sampling of Deterministic Signals

  • Yehuda DarEmail author
  • Alfred M. Bruckstein
Article
  • 267 Downloads

Abstract

In this work, we study the topic of high-resolution adaptive sampling of a given deterministic and differentiable signal and establish a connection with classic approaches to high-rate quantization. Specifically, we formulate solutions for the task of optimal high-resolution sampling, counterparts of well-known results for high-rate quantization. Our results reveal that the optimal high-resolution sampling structure is determined by the density of the signal-gradient energy, just as the probability density function defines the optimal high-rate quantization form. This paper has three main contributions: The first is establishing a fundamental paradigm bridging the topics of sampling and quantization. The second is a theoretical analysis of nonuniform sampling, for arbitrary signal dimension, relevant to the emerging field of high-resolution signal processing. The third is a new practical approach to nonuniform sampling of one-dimensional signals that enables reconstruction based only on the sampling time points and the signal extrema locations and values. Experiments for signal sampling and coding showed that our method outperforms an optimized tree-structured sampling technique.

Keywords

High-resolution sampling Adaptive sampling High-rate quantization Segmentation 

Notes

References

  1. 1.
    Bennett, W.R.: Spectra of quantized signals. Bell Syst. Tech. J. 27(3), 446–472 (1948)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Panter, P., Dite, W.: Quantization distortion in pulse-count modulation with nonuniform spacing of levels. Proc. IRE 39(1), 44–48 (1951)CrossRefGoogle Scholar
  3. 3.
    Gersho, A.: Asymptotically optimal block quantization. IEEE Trans. Inf. Theory 25(4), 373–380 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jerri, A.J.: The Shannon sampling theorem—its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)CrossRefzbMATHGoogle Scholar
  5. 5.
    Horiuchi, K.: Sampling principle for continuous signals with time-varying bands. Inf. Control 13(1), 53–61 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clark, J., Palmer, M., Lawrence, P.: A transformation method for the reconstruction of functions from nonuniformly spaced samples. IEEE Trans. Acoust. Speech Signal Process. 33(5), 1151–1165 (1985)CrossRefGoogle Scholar
  7. 7.
    Brueller, N., Peterfreund, N., Porat, M.: Non-stationary signals: optimal sampling and instantaneous bandwidth estimation. In: Proceedings of the IEEE-SP International Symposium on Time–Frequency and Time-Scale Analysis, pp. 113–115 (1998)Google Scholar
  8. 8.
    Wei, D., Oppenheim, A.V.: Sampling based on local bandwidth. In: Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers (ACSSC), pp. 1103–1107 (2007)Google Scholar
  9. 9.
    Sullivan, G.J., Ohm, J., Han, W.-J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  10. 10.
    Shukla, R., Dragotti, P.L., Do, M.N., Vetterli, M.: Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images. IEEE Transact. Image Process. 14(3), 343–359 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Shusterman, E., Feder, M.: Image compression via improved quadtree decomposition algorithms. IEEE Transact. Image Process. 3(2), 207–215 (1994)CrossRefGoogle Scholar
  12. 12.
    Ulichney, R.A.: Review of halftoning techniques. In: Electronic Imaging, pp. 378–391 (1999)Google Scholar
  13. 13.
    Lau, D.L., Ulichney, R.: Blue-noise halftoning for hexagonal grids. IEEE Trans. Image Process. 15(5), 1270–1284 (2006)CrossRefGoogle Scholar
  14. 14.
    Mitchell, D.P.: Generating antialiased images at low sampling densities. ACM SIGGRAPH Comput. Graph. 21(4), 65–72 (1987)CrossRefGoogle Scholar
  15. 15.
    Mitchell, D.P.: Spectrally optimal sampling for distribution ray tracing. ACM SIGGRAPH Comput. Graph. 25(4), 157–164 (1991)CrossRefGoogle Scholar
  16. 16.
    McCool, M., Fiume, E.: Hierarchical poisson disk sampling distributions. Proc. Conf. Graph. Interface 92, 94–105 (1992)Google Scholar
  17. 17.
    Fattal, R.: Blue-noise point sampling using kernel density model. ACM Trans. Graph. (TOG) 30(4), 48 (2011)CrossRefGoogle Scholar
  18. 18.
    Zhong, Z., Hua, J.: Kernel-based adaptive sampling for image reconstruction and meshing. Comput. Aided Geom. Des. 43, 68–81 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM J. Appl. Math. 70(1), 333–352 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Neuhoff, D.L., Pradhan, S.S.: Information rates of densely sampled data: Distributed vector quantization and scalar quantization with transforms for Gaussian sources. IEEE Trans. Inf. Theory 59(9), 5641–5664 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kipnis, A., Goldsmith, A.J., Eldar, Y.C.: Gaussian distortion-rate function under sub-Nyquist nonuniform sampling. In: 52nd Annual Allerton Conference on Communication, Control, and Computing, pp. 874–880 (2014)Google Scholar
  23. 23.
    Kipnis, A., Goldsmith, A.J., Eldar, Y.C., Weissman, T.: Distortion rate function of sub-Nyquist sampled Gaussian sources. IEEE Trans. Inf. Theory 62(1), 401–429 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Feizi, S., Goyal, V.K., Médard, M.: Locally adaptive sampling. In: 48th Annual Allerton Conference on Communication, Control, and Computing, pp. 152–159 (2010)Google Scholar
  25. 25.
    Feizi, S., Goyal, V.K., Médard, M.: Time-stampless adaptive nonuniform sampling for stochastic signals. IEEE Trans. Signal Process. 60(10), 5440–5450 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Martınez-Nuevo, P., Oppenheim, A.V.: Delta-ramp encoder: amplitude sampling meets time encoding. arXiv preprint arXiv:1802.04672 (2018)
  27. 27.
    Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383 (1998)CrossRefzbMATHGoogle Scholar
  28. 28.
    Newman, D.: The hexagon theorem. IEEE Trans. Inf. Theory 28(2), 137–139 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Barnes, E., Sloane, N.: The optimal lattice quantizer in three dimensions. SIAM J. Algebr. Discrete Methods 4(1), 30–41 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Du, Q., Wang, D.: The optimal centroidal Voronoi tessellations and the Gersho’s conjecture in the three-dimensional space. Comput. Math. Appl. 49(9), 1355–1373 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zador, P.: Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Trans. Inf. Theory 28(2), 139–149 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Na, S., Neuhoff, D.L.: Bennett’s integral for vector quantizers. IEEE Trans. Inf. Theory 41(4), 886–900 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Bucklew, J.: Companding and random quantization in several dimensions. IEEE Trans. Inf. Theory 27(2), 207–211 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bucklew, J.: A note on optimal multidimensional companders (corresp.). IEEE Trans. Inf. Theory 29(2), 279–279 (1983)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Moo, P., Neuhoff, D.: Optimal compressor functions for multidimensional companding. In: IEEE International Symposium on Information Theory, p. 515 (1997)Google Scholar
  37. 37.
    Simon, S.F.: On suboptimal multidimensional companding. In: Data Compression Conference, pp. 438–447 (1998)Google Scholar
  38. 38.
    Samuelsson, J.: Multidimensional companding quantization of the gaussian source. IEEE Trans. Inf. Theory 49(5), 1343–1351 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Perić, Z.H., Milanović, O.D., Jovanović, A.Ž.: Optimal companding vector quantization for circularly symmetric sources. Inf. Sci. 178(22), 4375–4381 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Chou, P.A., Lookabaugh, T., Gray, R.M.: Optimal pruning with applications to tree-structured source coding and modeling. IEEE Trans. Inf. Theory 35(2), 299–315 (1989)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Everett III, H.: Generalized lagrange multiplier method for solving problems of optimum allocation of resources. Oper. Res. 11(3), 399–417 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Shoham, Y., Gersho, A.: Efficient bit allocation for an arbitrary set of quantizers. IEEE Trans. Acoust. Speech Signal Process. 36(9), 1445–1453 (1988)CrossRefzbMATHGoogle Scholar
  43. 43.
    Ortega, A., Ramchandran, K.: Rate-distortion methods for image and video compression. IEEE Signal Process. Mag. 15(6), 23–50 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Science DepartmentTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations