Iterative Adaptive Nonconvex Low-Rank Tensor Approximation to Image Restoration Based on ADMM

  • Zhengwei ShenEmail author
  • Huitong Sun


In this paper, in order to recover more finer details of the image and to avoid the loss of image structure information for image restoration problem, we develop an iterative adaptive weighted core tensor thresholding (IAWCTT) approach based on the alternating direction method of multipliers (ADMM). By observing the decoupling property of the ADMM algorithm, we first propose that the key step to image restoration is to tackle the denoising subproblem efficiently using appropriate prior information. Secondly, by analyzing the properties of the core tensor, we propose that low-rank tensor approximation can be implemented by penalizing the core tensor itself, instead of penalizing the CP rank, Tucker rank or the multilinear rank and Tubal rank. The IAWCTT approach is proposed to solve the denoising subproblem in the ADMM framework, and we claim that such an adaptive weighted scheme is equivalent to a kind of nonconvex penalty for the core tensor; thus, it is unnecessary to use the nonconvex penalty term to induce strong sparse/low-rank solution in image restoration optimization problem, because the scheme that selecting appropriate weights to the convex penalty term can also lead to strong sparse/low-rank solution. Numerical experiments show that our proposed model and algorithm are comparable to other state-of-the-art models and methods.


Low-rank tensor approximation Image restoration ADMM Nonconvex penalty 



  1. 1.
    Zhang, L., Zuo, W.: Image restoration: from sparse and low rank priors to deep priors. IEEE Signal Process. Mag. 34(5), 172–179 (2017)CrossRefGoogle Scholar
  2. 2.
    Candés, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in Neural Information Processing Systems, vol. 22, pp. 2080–2088 (2009)Google Scholar
  4. 4.
    Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: IEEE Int. Conf. Comput. Vis. Pattern Recognit., pp. 1791–1798 (2010)Google Scholar
  5. 5.
    Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Peng, Y., Suo, J., Dai, Q., Xu, W.: Reweighted low-rank matrix recovery and its application in image restoration. IEEE Trans. Cybern. 44(12), 2418–2430 (2014)CrossRefGoogle Scholar
  7. 7.
    Zhang, H., He, W., Zhang, L., Shen, H., Yuan, Q.: Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 52(8), 4729–4743 (2014)CrossRefGoogle Scholar
  8. 8.
    Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mltteilungen 36(1), 53–78 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849–862 (2013)CrossRefGoogle Scholar
  10. 10.
    Pan, H., Huang, T., Ma, T.: Two-step group-based adaptive soft-thresholding algorithm for image denoising. Optik 127(1), 503–509 (2016)CrossRefGoogle Scholar
  11. 11.
    Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. ArXiv preprint arXiv:1705.09912
  12. 12.
    Zhao, Q., Meng, D., Kong, X., Xie, Q., Cao, W., Wang, Y., Xu, Z.: A novel sparsity measure for tensor recovery. In: IEEE Int. Conf. Comput. Vis., pp. 271–279 (2015)Google Scholar
  13. 13.
    Li, C., Ma, Y., Huang, J., Mei, X., Ma, J.: Hyperspectral image denoising using the robust low-rank tensor recovery. J. Opt. Soc. Am. A 32(9), 1604–1612 (2015)CrossRefGoogle Scholar
  14. 14.
    Wu, Z., Wang, Q., Jin, J., Shen, Y.: Structure tensor total variation-regularized weighted nuclear norm minimization for hyperspectral image mixed denoising. Signal Process. 131, 202–219 (2017)CrossRefGoogle Scholar
  15. 15.
    Liang, J., He, Y., Liu, D., Zeng, X.: Image fusion using higher order singular value decomposition. IEEE Trans. Image Process. 21(5), 2898–2909 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)CrossRefGoogle Scholar
  17. 17.
    Collins, M., Cohen, S.B.: Tensor decomposition for fast parsing with latent-variable PCFGs. In: Advances in Neural Information Processing Systems, pp. 2519–2527 (2012)Google Scholar
  18. 18.
    Chierchia, G., Pustelnik, N., Pesquet-Popescu, B., Pesquet, J.-C.: A nonlocal structure tensor based approach for multicomponent image recovery problems. IEEE Trans. Image Process. 23(12), 5531–5544 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lita, L., Pelican, E.: A low-rank tensor-based algorithm for face recognition. Appl. Math. Model. 39(3–4), 1266–1274 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Geng, J., Wang, L., Xu, Y., Wang, X.: A weighted nuclear norm method for tensor completion. Int. J. Signal Process. Image Process. Pattern Recogit. 7(1), 1–12 (2014)Google Scholar
  21. 21.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: IEEE Int. Conf. Comput. Vis., pp. 2272–2279 (2009)Google Scholar
  23. 23.
    Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dong, W., Li, G., Shi, G., Li, X., Ma, Y.: Low-rank tensor approximation with Laplacian scale mixture modeling for multiframe image denoising. In: IEEE Int. Conf. Comput. Vis. (2015)Google Scholar
  25. 25.
    Chang, G., Yu, B., Vetterli, M.: Spatially adaptive wavelet thresholding based on context modeling for image denoising. IEEE Trans. Image Process. 9(9), 1522–1531 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lyu, S., Simoncelli, E.: Modeling multiscale subbands of photographic images with fields of gaussian scale mixtures. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 693–706 (2009)CrossRefGoogle Scholar
  27. 27.
    Candes, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted L1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481–2499 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Dong, W., Shi, G., Ma, Y., Li, X.: Image restoration via simultaneous sparse coding: where structured sparsity meets Gaussian scale mixture. Int. J. Comput. Vis. 114(2–3), 217–232 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Papyan, V., Elad, M.: Multi-scale patch-based image restoration. IEEE Trans. Image Process. 25(1), 249–261 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)CrossRefGoogle Scholar
  32. 32.
    Moulin, P., Liu, J.: Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors. IEEE Trans. Inf. Theory 45, 909–919 (1999)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nikolova, M., Ng, M.K., Tam, C.P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans. Image Process. 19(12), 3073–3088 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems (2009)Google Scholar
  35. 35.
    Zuo, W., Meng, D., Zhang, L., Feng, X., Zhang, D.; A generalized iterated shrinkage algorithm for non-convex sparse coding. In: IEEE Int. Conf. Comput. Vis., pp. 217–224 (2013)Google Scholar
  36. 36.
    Selesnick, I.W., Bayram, I.: Sparse signal estimation by maximally sparse convex optimization. IEEE Trans. Signal Process. 62(5), 1072–1092 (2014)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Ding, Y., Selesnick, I.W.: Artifact-free wavelet denoising: non-convex sparse regularization, convex optimization. IEEE Signal Process. Lett. 22(9), 1364–1368 (2015)CrossRefGoogle Scholar
  38. 38.
    Kiers, H.A.L.: Towards a standardized notation and terminology in multiway analysis. J. Chemom. 14(3), 105–122 (2000)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third order ternsors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Selesnick, I.: Penalty and shrinkage functions for sparse signal processing. In: Connexions 11 (2012)Google Scholar
  42. 42.
    Lathauwer, L.D.: Signal Processing Based on Multilinear Algebra. Katholieke Universiteit Leuven, Leuven (1997)Google Scholar
  43. 43.
    Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: IEEE Int. Conf. Comput. Vis. Pattern Recognit., pp. 3842–3849 (2014)Google Scholar
  44. 44.
    Zhou, P., Lu, C., Lin, Z., Zhao, C.: Tensor factorization for low-rank tensor completion. IEEE Trans. Image Process. 27(3), 1152–1163 (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 1–19 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21(4), 1715–1728 (2012)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wen, Y., Ng, M., Ching, W.: Iterative algorithms based on decoupling of deblurring and denoising for image restroation. SIAM J. Sci. Comput. 30(5), 2655–2674 (2008)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: IEEE Int. Conf. Comput. Vis. Pattern Recognit. (2017)Google Scholar
  49. 49.
    Lu, C., Tang, J., Yan, S., Lin, Z.: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm. IEEE Trans. Image Process. 25(2), 829–839 (2016)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol 2, pp 1398–1402 (2003)Google Scholar
  52. 52.
    Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives. Pac. J. Optim. 11(4), 619–644 (2015)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefGoogle Scholar
  54. 54.
    Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Hong, M., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141(1–2), 349–382 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations