Journal of Mathematical Imaging and Vision

, Volume 61, Issue 4, pp 443–457 | Cite as

Error-Controlled Model Approximation for Gaussian Process Morphable Models

  • Jürgen Dölz
  • Thomas GerigEmail author
  • Marcel Lüthi
  • Helmut Harbrecht
  • Thomas Vetter


Gaussian Process Morphable Models (GPMMs) unify a variety of non-rigid deformation models for surface and image registration. Deformation models, such as B-splines, radial basis functions, and PCA models are defined as a probability distribution using a Gaussian process. The method depends heavily on the low-rank approximation of the Gaussian process, which is mandatory to obtain a parametric representation of the model. In this article, we propose the use of the pivoted Cholesky decomposition for this task, which has the following advantages: (1) Compared to the current state of the art used in GPMMs, it provides a fully controllable approximation error. The algorithm greedily computes new basis functions until the user-defined approximation accuracy is reached. (2) Unlike the currently used approach, this method can be used in a black-box-like scenario, whereas the method automatically chooses the amount of basis functions for a given model and accuracy. (3) We propose the Newton basis as an alternative basis for GPMMs. The proposed basis does not need an SVD computation and can be iteratively refined. We show that the proposed basis functions achieve competitive registration results while providing the mentioned advantages for its computation.


Non-rigid registration Gaussian process Image registration Shape registration Pivoted Cholesky Gaussian Process Morphable Models GPMM Statistical shape modeling 



This work has been funded as part of two Swiss National Science foundation projects in the context of the Projects SNF153297 and SNF156101. We thank Andreas Morel-Forster and Volker Roth for interesting and enlightening discussions. A special thanks goes to Ghazi Bouabene and Christoph Langguth for their work on the Scalismo software, in which all the methods are implemented.


  1. 1.
    Albrecht, T., Lüthi, M., Gerig, T., Vetter, T.: Posterior shape models. Med. Image Anal. 17(8), 959–973 (2013)CrossRefGoogle Scholar
  2. 2.
    Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid icp algorithms for surface registration. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)Google Scholar
  3. 3.
    Amit, Y., Grenander, U., Piccioni, M.: Structural image restoration through deformable templates. J. Am. Stat. Assoc. 86(414), 376–387 (1991)CrossRefGoogle Scholar
  4. 4.
    Beebe, N.H.F., Linderberg, J.: Simplifications in the generation and transformation of two-electron integrals in molecular calculations. Int. J. Quantum Chem. 12(4), 683–705 (1977)CrossRefGoogle Scholar
  5. 5.
    Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics, vol. 3. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press (1999)Google Scholar
  7. 7.
    Cootes, T.F., Beeston, C., Edwards, G.J., Taylor, C.J .: A unified framework for atlas matching using active appearance models. In: Biennial International Conference on Information Processing in Medical Imaging, pp. 322–333. Springer (1999)Google Scholar
  8. 8.
    Cuadra, M.B., Duay, V., Thiran, J.-P.: Atlas-based segmentation. In: Handbook of Biomedical Imaging, pp. 221–244. Springer (2015)Google Scholar
  9. 9.
    Foster, L., Waagen, A., Aijaz, N., Hurley, M., Luis, A., Rinsky, J., Satyavolu, C., Way, M.J., Gazis, P., Srivastava, A.: Stable and efficient Gaussian process calculations. J. Mach. Learn. Res. 10, 857–882 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gerig, T., Morel-Forster, A., Blumer, C., Egger, B., Luthi, M., Schoenborn, S., Vetter, T.: Morphable face models—an open framework. In: 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), pp. 75–82 (2018)Google Scholar
  11. 11.
    Gerig, T., Shahim, K., Reyes, M., Vetter, T., Lüthi, M.: Spatially varying registration using Gaussian processes. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2014, pp. 413–420. Springer (2014)Google Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2012)zbMATHGoogle Scholar
  13. 13.
    Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. 56(4), 617–694 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Griebel, M., Harbrecht, H.: Approximation of bi-variate functions: singular value decomposition versus sparse grids. IMA J. Numer. Anal. 34(1), 28–54 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hackbusch, W.: Integral Equations: Theory and Numerical Treatment, vol. 4. Birkhäuser, Basel (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Harbrecht, H., Peters, M., Siebenmorgen, M.: Efficient approximation of random fields for numerical applications. Numer. Linear Algebra Appl. 22(4), 596–617 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Harbrecht, H., Peters, M., Schneider, R.: On the low-rank approximation by the pivoted cholesky decomposition. Appl. Numer. Math. 62(4), 428–440 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Heimann, T., Van Ginneken, B., Styner, M., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A., Becker, C., Beichel, R., Bekes, G.: Comparison and evaluation of methods for liver segmentation from ct datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)CrossRefGoogle Scholar
  20. 20.
    Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)CrossRefGoogle Scholar
  21. 21.
    Joshi, S.C., Banerjee, A., Christensen, G.E., Csernansky, J.G., Haller, J.W., Miller, M.I., Wang, L.: Gaussian random fields on sub-manifolds for characterizing brain surfaces. In: Information Processing in Medical Imaging, pp. 381–386. Springer (1997)Google Scholar
  22. 22.
    Jud, C., Mori, N., Cattin, P.C.: Sparse kernel machines for discontinuous registration and nonstationary regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 9–16 (2016)Google Scholar
  23. 23.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  24. 24.
    Lüthi, M., Jud, C., Vetter, T.: Using landmarks as a deformation prior for hybrid image registration. In: Pattern Recognition, pp. 196–205 (2011)Google Scholar
  25. 25.
    Lüthi, M., Forster, A., Gerig, T., Vetter, T.: Gaussian process morphable models. In: Zheng, G., Li, S., Szekely, G. (eds.) Statistical Shape and Deformation Analysis—Methods, Implementation and Applications. Academic Press (2017)Google Scholar
  26. 26.
    Lüthi, M., Gerig, T., Jud, C., Vetter, T.: Gaussian process morphable models. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1860–1873 (2018)CrossRefGoogle Scholar
  27. 27.
    Lüthi, M., Jud, C., Vetter, T.: A unified approach to shape model fitting and non-rigid registration. In: Machine Learning in Medical Imaging, pp. 66–73. Springer (2013)Google Scholar
  28. 28.
    Ma, J., Zhao, J., Tian, J., Tu, Z., Yuille, A.L.: Robust estimation of nonrigid transformation for point set registration. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June (2013)Google Scholar
  29. 29.
    Opfer, R.: Multiscale kernels. Adv. Comput. Math. 25(4), 357–380 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236(4), 575–588 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Springer, Berlin (2006)zbMATHGoogle Scholar
  32. 32.
    Rosasco, L., Belkin, M., De Vito, E.: On learning with integral operators. J. Mach. Learn. Res. 11, 905–934 (2010)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3d statistical deformation models using non-rigid registration. In: MICCAI’01: Medical Image Computing and Computer-Assisted Intervention, pp. 77–84 (2001)Google Scholar
  34. 34.
    Santin, G., Schaback, R.: Approximation of eigenfunctions in kernel-based spaces. Adv. Comput. Math. 42(4), 973–993 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Scalismo-scalable image analysis and shape modelling. Accessed 10 Oct 2018
  36. 36.
    Yuille, A., Kersten, D.: Vision as Bayesian inference: analysis by synthesis? Trends Cogn. Sci. 10(7), 301–308 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of BaselBaselSwitzerland

Personalised recommendations