Advertisement

Journal of Mathematical Imaging and Vision

, Volume 61, Issue 2, pp 193–203 | Cite as

A Q-Convexity Vector Descriptor for Image Analysis

  • P. Balázs
  • S. BrunettiEmail author
Article
  • 49 Downloads

Abstract

Shape representation is a main problem in computer vision, and shape descriptors are widely used for image analysis. In this paper, based on the previous work Balázs, P., Brunetti, S.: A New Shape Descriptor Based on a Q-convexity Measure, Lecture Notes in Computers Science 10502, 20th Discrete Geometry for Computer Imagery (DGCI) (2017) 267–278, we design a new convexity vector descriptor derived by the notion of the so-called generalized salient points matrix. We investigate properties of the vector descriptor, such as scale invariance and its behavior in a ranking task. Moreover, we present results on a binary and a multiclass classification problem using k-nearest neighbor, decision tree, and support vector machine methods. Results of these experiments confirm the good behavior of our proposed descriptor in accuracy, and its performance is comparable and, in some cases, superior to some recently published similar methods.

Keywords

Shape descriptor Q-convexity Generalized salient point Classification methods 

Notes

Acknowledgements

The authors thank P.L. Rosin for providing the dataset used in [21] and M. Clément for providing the noisy images from DRIVE and CHASEDB1 used in [8]. The collaboration of the authors was supported by the COST Action MP1207 “EXTREMA: Enhanced X-ray Tomographic Reconstruction: Experiment, Modeling, and Algorithms.” The research of Péter Balázs was supported by the NKFIH OTKA [Grant Number K112998].

References

  1. 1.
    Balázs, P., Brunetti, S.: A measure of Q-convexity. Lecture Notes in Computers Science 9647, 19th Discrete Geometry for Computer Imagery (DGCI), Nantes, 219–230 (2016)Google Scholar
  2. 2.
    Balázs, P., Brunetti, S.: A new shape descriptor based on a q-convexity measure. Lecture Notes in Computers Science 10502, 20th Discrete Geometry for Computer Imagery (DGCI), Wien, 267–278 (2017)Google Scholar
  3. 3.
    Bloch, I., Colliot, O., Cesar Jr., R.M.: On the ternary spatial relation “between”. IEEE Trans. Syst. Man Cybern. B Cybern. 36(2), 312–327 (2006)CrossRefGoogle Scholar
  4. 4.
    Boxer, L.: Computing deviations from convexity in polygons. Pattern Recogn. Lett. 14, 163–167 (1993)CrossRefzbMATHGoogle Scholar
  5. 5.
    Brunetti, S., Balázs, P.: A measure of \(Q\)-convexity for shape analysis. Pattern Recogn. Lett. (submitted)Google Scholar
  6. 6.
    Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor. Comput. Sci. 304(1–3), 35–57 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brunetti, S., Daurat, A.: Reconstruction of convex lattice sets from tomographic projections in quartic time. Theor. Comput. Sci. 406(1–2), 55–62 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Clement, M., Poulenard, A., Kurtz, C., Wendling, L.: Directional enlacement histograms for the description of complex spatial configurations between objects. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2366–2380 (2017)CrossRefGoogle Scholar
  9. 9.
    Daurat, A.: Salient points of q-convex sets. Int. J Pattern Recognit. Artif. Intell. 15, 1023–1030 (2001)CrossRefGoogle Scholar
  10. 10.
    Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Patt. Rec. 26, 167–174 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, 4th edn. Morgan Kaufmann, Burlington (2016)Google Scholar
  12. 12.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)CrossRefGoogle Scholar
  13. 13.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River (2008)Google Scholar
  14. 14.
    Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Basel (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Latecki, L.J., Lakamper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Und. 73(3), 441–454 (1999)CrossRefGoogle Scholar
  16. 16.
    Matsakis, P., Wendling, L.: A new way to represent the relative position between areal objects. IEEE Trans. Pattern Anal. Mach. Intell. 21(7), 634–643 (1999)CrossRefGoogle Scholar
  17. 17.
    Pick, G.A.: Geometrisches zur Zahlenlehre. Sitz.-Ber. Lotos (Prag) 19, 311–319 (1899)zbMATHGoogle Scholar
  18. 18.
    Proffitt, D.: The measurement of circularity and ellipticity on a digital grid. Patt. Rec. 15, 383–387 (1982)CrossRefGoogle Scholar
  19. 19.
    Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE T. Pattern Anal. 28(9), 1501–1512 (2006)CrossRefGoogle Scholar
  20. 20.
    Ronse, C.: Bibliography on digital and computational convexity. IEEE Trans. Pattern Anal. Mach. Intell. 11(2), 181–190 (1989)CrossRefzbMATHGoogle Scholar
  21. 21.
    Rosin, P.L., Zunic, J.: Probabilistic convexity measure. IET Image Process. 1(2), 182–188 (2007)CrossRefGoogle Scholar
  22. 22.
    Roussillon, T., Tougne, L., Sivignon, I.: Robust decomposition of a digital curve into convex and concave parts. In: 19th International Conference on Pattern Recognition (ICPR), pp. 1–4 (2008)Google Scholar
  23. 23.
    Roussillon, T., Piégay, H., Sivignon, I., Tougne, L., Lavigne, F.: Automatic computation of pebble roundness using digital imagery and discrete geometry. Comput. Geosci. 35(10), 1992–2000 (2009)CrossRefGoogle Scholar
  24. 24.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–71 (2004)CrossRefGoogle Scholar
  25. 25.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 3rd edn. Thomson Learning, Toronto (2008)Google Scholar
  26. 26.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  27. 27.
    Stern, H.: Polygonal entropy: a convexity measure. Pattern Recogn. Lett. 10, 229–235 (1998)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zhang, D., Lu, G.: Shape-based image retrieval using generic Fourier descriptor. Signal Process.: Image Commun. 17(10), 825–848 (2002)Google Scholar
  29. 29.
    Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE Trans. Pattern Anal. 26(7), 923–934 (2004)CrossRefGoogle Scholar
  30. 30.
    Zunic, J., Rosin, P.L., Kopanja, L.: On the orientability of shapes. IEEE Trans. Image Process. 15(11), 3478–3487 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary
  2. 2.Dipartimento di Ingegneria dell’Informazione e Scienze MatematicheUniversità di SienaSienaItaly

Personalised recommendations