Journal of Mathematical Imaging and Vision

, Volume 61, Issue 2, pp 204–223 | Cite as

Geometric Preservation of 2D Digital Objects Under Rigid Motions

  • Phuc NgoEmail author
  • Nicolas Passat
  • Yukiko Kenmochi
  • Isabelle Debled-Rennesson


Rigid motions (i.e. transformations based on translations and rotations) are simple, yet important, transformations in image processing. In \(\mathbb {R}^n\), they are both topology and geometry preserving. Unfortunately, these properties are generally lost in \(\mathbb {Z}^n\). In particular, when applying a rigid motion on a digital object, one generally alters its structure but also the global shape of its boundary. These alterations are mainly caused by digitization during the transformation process. In this specific context, some solutions for the handling of topological issues were proposed in \(\mathbb {Z}^2\). In this article, we also focus on geometric issues in \(\mathbb {Z}^2\). Indeed, we propose a rigid motion scheme that preserves geometry and topology properties of the transformed digital object: a connected object will remain connected, and some geometric properties (e.g. convexity, area and perimeter) will be preserved. To reach that goal, our main contributions are twofold. First, from an algorithmic point of view, our scheme relies on (1) a polygonization of the digital object, (2) the transformation of the intermediate piecewise affine object of \(\mathbb {R}^2\) and (3) a digitization step for recovering a result within \(\mathbb {Z}^2\). The intermediate modeling of a digital object of \(\mathbb {Z}^2\) as a piecewise affine object of \(\mathbb {R}^2\) allows us to avoid the geometric alterations generally induced by standard pointwise rigid motions. However, the final digitization of the polygon back to \(\mathbb {Z}^2\) has to be carried out cautiously. In particular, our second, theoretical contribution is a notion of quasi-regularity that provides sufficient conditions to be fulfilled by a continuous object for guaranteeing both topology and geometry preservation during its digitization.


Rigid motions Geometry and topology preservation Polygonization Digitization Quasi-r-regularity 



We would like to thank the anonymous referees for their valuable comments. In particular, we are especially grateful to referee 3, who pointed out an improved definition of quasi-r-regularity.

This work was partly funded by the French Agence Nationale de la Recherche, grant agreement ANR-15-CE40-0006 (CoMeDiC,, by the French Programmed’Investissements d’Avenir (LabEx Bézout, ANR-10-LABX-58) and by a mobility grant from the French Groupe de Recherche IGRV (CNRS).


  1. 1.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)Google Scholar
  2. 2.
    Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology-preserving warping of binary images according to one-to-one mappings. IEEE Trans. Image Process. 20(8), 2135–2145 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Comput. Vis. Image Underst. 117(4), 393–408 (2013)zbMATHGoogle Scholar
  4. 4.
    Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective digitized rigid motions on subsets of the plane. J. Math. Imaging Vis. 59(1), 84–105 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital images under rigid transformations. J. Math. Imaging Vis. 49(2), 418–433 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Pavlidis, T.: Algorithms for Graphics and Image Processing. Springer, Berlin (1982)zbMATHGoogle Scholar
  8. 8.
    Ngo, P., Kenmochi, Y., Debled-Rennesson, I., Passat, N.: Convexity-preserving rigid motions of 2D digital objects. In: Discrete Geometry for Computer Imagery, Vol. 1568, pp. 69–81 (2017)Google Scholar
  9. 9.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  10. 10.
    Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: a unified topological framework. J. Math. Imaging Vis. 44(1), 19–37 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Yung Kong, T., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Gr. Image Process. 48(3), 357–393 (1989)Google Scholar
  12. 12.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc, Orlando (1983)Google Scholar
  13. 13.
    Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vis. 8(2), 131–159 (1998)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Stelldinger, P., Köthe, U.: Towards a general sampling theory for shape preservation. Image Vis. Comput. 23(2), 237–248 (2005)zbMATHGoogle Scholar
  15. 15.
    Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Rosenfeld, A., Kong, T.Y., Nakamura, A.: Topology-preserving deformations of two-valued digital pictures. Gr. Models Image Process. 60(1), 24–34 (1998)Google Scholar
  17. 17.
    Boutry, N., Géraud, T., Najman, L.: A tutorial on well-composedness. J. Math. Imaging Vis. 60(3), 443–478 (2018)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Maunder, C.R.F.: Algebraic Topology. Dover, New York (1996)zbMATHGoogle Scholar
  19. 19.
    Rosenfeld, A.: Digital topology. Am. Math. Mon. 86(8), 621–630 (1979)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)Google Scholar
  21. 21.
    Heijmans, H.J.A.M., Ronse, C.: The algebraic basis of mathematical morphology. I Dilations and erosions. CVGIP Image Underst. 50(3), 245–295 (1990)zbMATHGoogle Scholar
  22. 22.
    Ronse, C., Heijmans, H.J.A.M.: The algebraic basis of mathematical morphology: II. Openings and closings. CVGIP Image Underst. 54(1), 74–97 (1991)zbMATHGoogle Scholar
  23. 23.
    Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Reading, MA (1969)zbMATHGoogle Scholar
  24. 24.
    Sklansky, J.: Recognition of convex blobs. Pattern Recognit. 2(1), 3–10 (1970)Google Scholar
  25. 25.
    Kim, C.E.: On the cellular convexity of complexes. IEEE Trans. Pattern Anal. Mach. Intell. 3(6), 617–625 (1981)Google Scholar
  26. 26.
    Eckhardt, U.: Digital lines and digital convexity. In: Digital and Image Geometry: Advanced Lectures, pp. 209–228 (2001)Google Scholar
  27. 27.
    Kim, C.E., Rosenfeld, A.: Digital straight lines and convexity of digital regions. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 149–153 (1982)zbMATHGoogle Scholar
  28. 28.
    Cristescu, G., Lupsa, L.: Non-Connected Convexities and Applications. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  29. 29.
    Debled-Rennesson, I., Rémy, J.-L., Rouyer-Degli, J.: Detection of the discrete convexity of polyominoes. Discret. Appl. Math. 125(1), 115–133 (2003)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Debled-Rennesson, I., Reveillès, J.: A linear algorithm for segmentation of digital curves. Int. J. Pattern Recognit. Artif. Intell. 9(4), 635–662 (1995)Google Scholar
  31. 31.
    Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: application to the curvature. In: Discrete Geometry for Computer Imagery, Vol. 1568, pp. 31–40 (1999)Google Scholar
  32. 32.
    Brlek, S., Lachaud, J., Provençal, X., Reutenauer, C.: Lyndon + Christoffel = digitally convex. Pattern Recognit. 42(10), 2239–2246 (2009)zbMATHGoogle Scholar
  33. 33.
    Duval, J.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25(1), 11–12 (1987)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Anglin, W.S.: Using Pythagorean triangles to approximate angles. Am. Math. Mon. 95(6), 540–541 (1988)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Sivignon, I., Breton, R., Dupont, F., Andres, E.: Discrete analytical curve reconstruction without patches. Image Vis. Comput. 23(2), 191–202 (2005)Google Scholar
  37. 37.
    Dexet, M., Coeurjolly, D., Andres, E.: Invertible polygonalization of 3D planar digital curves and application to volume data reconstruction. In: International Symposium on Visual Computing, Vol. 4292, pp. 514–523 (2006)Google Scholar
  38. 38.
    Vittone, J., Chassery, J.-M.: Recognition of digital naive planes and polyhedrization. In: Discrete Geometry for Computer Imagery, Vol. 1953, pp. 296–307 (2000)Google Scholar
  39. 39.
    Feschet, F., Tougne, L.: On the min DSS problem of closed discrete curves. Discret. Appl. Math. 151(1–3), 138–153 (2005)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Dörksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. In: Geometric Properties for Incomplete Data, pp. 145–159 (2006)Google Scholar
  41. 41.
    Dörksen-Reiter, H., Debled-Rennesson, I.: A linear algorithm for polygonal representations of digital sets. In: International Workshop on Combinatorial Image Analysis, Vol. 4040, pp. 307–319 (2006)Google Scholar
  42. 42.
    Roussillon, T., Sivignon, I.: Faithful polygonal representation of the convex and concave parts of a digital curve. Pattern Recognit. 44(10–11), 2693–2700 (2011)zbMATHGoogle Scholar
  43. 43.
    Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recognit. 44(1), 32–44 (2011)zbMATHGoogle Scholar
  44. 44.
    Ngo, P., Nasser, H., Debled-Rennesson, I.: Efficient dominant point detection based on discrete curve structure. In: International Workshop on Combinatorial Image Analysis, Vol. 9448, pp. 143–156 (2015)Google Scholar
  45. 45.
    Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: Discrete Geometry for Computer Imagery, Vol. 6607, pp. 83–94 (2011)Google Scholar
  46. 46.
    Sivignon, I.: A near-linear time guaranteed algorithm for digital curve simplification under the Fréchet distance. In: Discrete Geometry for Computer Imagery, Vol. 6607, pp. 333–345 (2011)Google Scholar
  47. 47.
    Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Mathematico di Palermo 22, 1–74 (1906)zbMATHGoogle Scholar
  48. 48.
    Pick, G.: Geometrisches zur Zahlenlehre, Sitzungsberichte des Deutschen Naturwissenschaftlich-Medicinischen Vereines für Böhmen “Lotos” in Prag, 19, 311–319 (1899)Google Scholar
  49. 49.
    Klette, R., Ẑunić, J.: Multigrid convergence of calculated features in image analysis. J. Math. Imaging Vis. 13, 173–191 (2000)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Kovalevsky, V., Fuchs, S.: Theoretical and experimental analysis of the accuracy of perimeter estimates. In: Förster, W., Ruwiedel, S. (eds.) Robust Computer Vision, pp. 218–242 (1992)Google Scholar
  51. 51.
    Coeurjolly, D., Lachaud, J.-O., Roussillon, T.: Multigrid convergence of discrete geometric estimators. In Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms, Lecture Notes in Computational Vision and Biomechanics, vol. 2 pp. 395–424 (2012)Google Scholar
  52. 52.
    Lachaud, J.-O., Thibert, B.: Properties of Gauss digitized shapes and digital surface integration. J. Math. Imaging Vis. 54(2), 162–180 (2016)MathSciNetzbMATHGoogle Scholar
  53. 53.
    DGtal: Digital geometry tools and algorithms library.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Lorraine, LORIAVillers-lés-NancyFrance
  2. 2.Université de Reims Champagne-Ardenne, CReSTICReimsFrance
  3. 3.Université Paris-Est, LIGM, CNRSMarne-la-ValléeFrance

Personalised recommendations