Advertisement

Journal of Mathematical Imaging and Vision

, Volume 61, Issue 3, pp 310–330 | Cite as

Euclidean Distance-Based Skeletons: A Few Notes on Average Outward Flux and Ridgeness

  • Julien MilleEmail author
  • Aurélie Leborgne
  • Laure Tougne
Article
  • 283 Downloads

Abstract

Among the various existing and mathematically equivalent definitions of the skeleton, we consider the set of critical points of the Euclidean distance transform of the shape. The problem of detecting these points and using them to generate a skeleton that is stable, thin and homotopic to the shape has been the focus of numerous papers. Skeleton branches correspond to ridges of the distance map, i.e., continuous lines of points that are local maxima of the distance in at least one direction. Extracting these ridges is a non-trivial task on a discrete grid. In this context, the average outward flux, used in the Hamilton–Jacobi skeleton (Siddiqi et al. in Int J Comput Vis 48(3):215–231, 2002), and the ridgeness measure (Leborgne et al. in J Vis Commun Image Represent 31:165–176, 2015) have been proposed as ridge detectors. We establish the mathematical relation between these detectors and, extending the work in Dimitrov et al. (Computer vision and pattern recognition, pp 835–841, 2003), we study various local shape configurations, on which closed-form expressions or approximations of the average outward flux and ridgeness can be derived. In addition, we conduct experiments to assess the accuracy of skeletons generated using these measures and study the influence of their respective parameters.

Keywords

Skeleton Distance Flux Ridgeness 

Notes

Acknowledgements

We thank Moncef Hidane for the fruitful discussions. In particular, he suggested that we study bounds for elliptic integrals and directed us toward several well-known theorems in calculus.

Supplementary material

10851_2018_836_MOESM1_ESM.pdf (461 kb)
Supplementary material 1 (pdf 461 KB)

References

  1. 1.
    Alzer, H., Qiu, S.-L.: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289–312 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amenta, N., Sunghee, C., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19(2–3), 127–153 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 31, 512–524 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arcelli, C., Sanniti di Baja, G.: A width-independent fast thinning algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 7(4), 463–474 (1985)CrossRefGoogle Scholar
  5. 5.
    Arcelli, C., Sanniti di Baja, G.: Ridge points in Euclidean distance maps. Pattern Recognit. Lett. 13(4), 237–243 (1992)CrossRefGoogle Scholar
  6. 6.
    Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)CrossRefGoogle Scholar
  7. 7.
    Bai, X., Latecki, L.J., Liu, W.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 449–462 (2007)CrossRefGoogle Scholar
  8. 8.
    Barnard, R.W., Pearce, K., Richards, K.C.: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31, 693–699 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Barnard, R.W., Pearce, K., Richards, K.C.: A monotonicity property involving \({}_3{F}_2\) and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32, 403–419 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognit. Lett. 15(2), 169–175 (1994)CrossRefzbMATHGoogle Scholar
  11. 11.
    Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recognit. 10, 167–180 (1978)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Med. Image Anal. 9(3), 209–221 (2005)CrossRefGoogle Scholar
  13. 13.
    Brandt, J.W., Algazi, V.R.: Continuous skeleton computation by Voronoi diagram. Comput. Vis. Gr. Image Process. Image Underst. 55(3), 329–337 (1992)zbMATHGoogle Scholar
  14. 14.
    Carlson, B.C.: Some inequalities for hypergeometric functions. Proc. Am. Math. Soc. 17, 32–39 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Carlson, B.C.: Elliptic integrals. In: Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.) NIST Handbook of Mathematical Functions, pp. 485–522. Cambridge University Press, Cambridge (2010)Google Scholar
  16. 16.
    Chazal, F., Lieutier, A.: The \(\lambda \)-medial axis. Gr. Models 67(4), 304–331 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Coeurjolly, D., Montanvert, A.: Optimal separable algorithms to compute the reverse Euclidean distance transformation and discrete medial axis in arbitrary dimension. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 437–448 (2007)CrossRefGoogle Scholar
  18. 18.
    Dimitrov, P., Damon, J.N., Siddiqi, K.: Flux invariants for shape. In: Computer Vision and Pattern Recognition, pp. 835–841 (2003)Google Scholar
  19. 19.
    Direkoglu, C., Dahyot, R., Manzke, M.: On using anisotropic diffusion for skeleton extraction. Int. J. Comput. Vis. 100(2), 170–189 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ge, Y., Fitzpatrick, J.M.: On the generation of skeletons from discrete Euclidean distance maps. IEEE Trans. Pattern Anal. Mach. Intell. 18(11), 1055–1066 (1996)CrossRefGoogle Scholar
  21. 21.
    Giblin, P.J., Kimia, B.B.: A formal classification of the 3D medial axis points and their local geometry. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 238–251 (2004)CrossRefGoogle Scholar
  22. 22.
    Hesselink, W., Roerdink, J.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2204–2217 (2008)CrossRefGoogle Scholar
  23. 23.
    Jalba, A.C., Sobiecki, A., Telea, A.C.: An unified multiscale framework for planar, surface, and curve skeletonization. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 30–45 (2016)CrossRefGoogle Scholar
  24. 24.
    Katz, R.A., Pizer, S.M.: Untangling the blum medial axis transform. Int. J. Comput. Vis. 55(2–3), 139–153 (2003)CrossRefGoogle Scholar
  25. 25.
    Kimmel, R., Shaked, D., Kiryati, N.: Skeletonization via distance maps and level sets. Comput. Vis. Image Underst. 62(3), 382–391 (1995)CrossRefGoogle Scholar
  26. 26.
    Lam, L., Lee, S.-W., Suen, C.: Thinning methodologies—a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)CrossRefGoogle Scholar
  27. 27.
    Latecki, L.J., Li, Q., Bai, X., Liu, W.: Skeletonization using SSM of the distance transform. In: International Conference in Image Processing, pp. 349–352 (2007)Google Scholar
  28. 28.
    Leborgne, A., Mille, J., Tougne, L.: Noise-resistant digital euclidean connected skeleton for graph-based shape matching. J. Vis. Commun. Image Represent. 31, 165–176 (2015)CrossRefGoogle Scholar
  29. 29.
    Leborgne, A., Mille, J., Tougne, L.: Hierarchical skeleton for shape matching. In: International Conference in Image Processing, pp. 3603–3607 (2016)Google Scholar
  30. 30.
    Lee, D.T.: Medial axis transformation of a planar shape. IEEE Trans. Pattern Anal. Mach. Intell. 4(4), 363–369 (1982)CrossRefzbMATHGoogle Scholar
  31. 31.
    Li, Q, Bai, X., Liu, W.: Skeletonization of gray-scale image from incomplete boundaries. In: International Conference in Image Processing, pp. 877–880 (2008)Google Scholar
  32. 32.
    Macrini, D., Dickinson, S., Fleet, D., Siddiqi, K.: Bone graphs: medial shape parsing and abstraction. Comput. Vis. Image Underst. 115(7), 1044–1061 (2011)CrossRefGoogle Scholar
  33. 33.
    Macrini, D., Dickinson, S., Fleet, D., Siddiqi, K.: Object categorization using bone graphs. Comput. Vis. Image Underst. 115(8), 1187–1206 (2011)CrossRefGoogle Scholar
  34. 34.
    Marie, R., Labbani-Igbida, O., Mouaddib, E.M.: The delta medial axis: a fast and robust algorithm for filtered skeleton extraction. Pattern Recognit. 56, 25–39 (2016)CrossRefGoogle Scholar
  35. 35.
    Meijster, A., Roerdink, J., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Mathematical Morphology and Its Applications to Image and Signal Processing, pp. 331–340 (2000)Google Scholar
  36. 36.
    Neuman, E.: Inequalities and bounds for generalized complete elliptic integrals. J. Math. Anal. Appl. 373(1), 203–213 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ogniewicz, R., Kübler, O.: Hierarchic voronoi skeletons. Pattern Recognit. 28(3), 343–359 (1995)CrossRefGoogle Scholar
  38. 38.
    Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theor. Comput. Sci. 406(1–2), 119–135 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Pizer, S.M., Siddiqi, K., Székely, G., Damon, J.N., Zucker, S.W.: Multiscale medial loci and their properties. Int. J. Comput. Vis. 55(2–3), 155–179 (2003)CrossRefGoogle Scholar
  40. 40.
    Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72(3), 404–413 (1998)CrossRefGoogle Scholar
  41. 41.
    Sebastian, T., Kimia, B.: Curves versus skeletons in object recognition. Sig. Process. 85(2), 247–263 (2005)CrossRefzbMATHGoogle Scholar
  42. 42.
    Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–571 (2004)CrossRefGoogle Scholar
  43. 43.
    Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton–Jacobi skeletons. Int. J. Comput. Vis. 48(3), 215–231 (2002)CrossRefzbMATHGoogle Scholar
  44. 44.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.: Shock graphs and shape matching. Int. J. Comput. Vis. 35(1), 13–32 (1999)CrossRefGoogle Scholar
  45. 45.
    Torsello, A., Hancock, E.R.: Correcting curvature-density effects in the Hamilton–Jacobi skeleton. IEEE Trans. Image Process. 15(4), 877–891 (2006)CrossRefGoogle Scholar
  46. 46.
    Vamanamurthy, M.K., Vuorinen, M.: Inequalities for means. J. Math. Anal. Appl. 183(1), 155–166 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Vuorinen, M.: Hypergeometric functions in geometric function theory. In: Pproceedings of a Special Functions and Differential Equations, Workshop Held at The Institute of Mathematical Sciences, Madras, India, pp. 119–126 (1997)Google Scholar
  48. 48.
    Yang, C., Tiebe, O., Shirahama, K., Grzegorzek, M.: Object matching with hierarchical skeletons. Pattern Recognit. 55, 183–197 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LIFAT, EA6300INSA Centre Val de LoireBloisFrance
  2. 2.Institut Pascal, UMR6602Université Clermont Auvergne, CNRSAubièreFrance
  3. 3.Université Lyon 2, LIRIS, UMR5205Université de Lyon, CNRSBronFrance

Personalised recommendations