Journal of Logic, Language and Information

, Volume 27, Issue 3, pp 193–203 | Cite as

Diversification of Object-Languages for Propositional Logics

  • Nissim FrancezEmail author


I argue in favour of object languages of logics to be diversely-generated, that is, not having identical (or equivalent) immediate sub-formulas. In addition to diversely-generated object languages constituting a more appropriate abstraction of the use of sentential connectives in natural language, I show that such language lead to a simplifications w.r.t. some specific issues: the identity of proofs, the factual equivalence (in logics of grounding) and the Mingle axiom in Relevance logics. I also point out that some of the properties of classical logic based on freely-generated object languagest.


Freely-generated syntax Diversely-generated syntax Gricean maxims Identity of proof Logics of Grounding Relevance logis Self implication Mingle 


  1. Ageron, P. (2007). Logic without self-deductibility. In B. Jean-Yves (Eds.), Logica Universalis (2nd edition) (pp. 87–93). Birkhäuser, Basel.
  2. Anderson, A. R., & Belnap, N. D. Jr. (1975). Entailment (vol. 1). Princeton University Press: N.J.Google Scholar
  3. Avron, A. (1992). Whither relevance logic. Journal of philosophical Logic, 21(3), 243–281.CrossRefGoogle Scholar
  4. Béziau, J-Y. (2012). History of truth-values. In M. G. Dov and W. Woods (Eds), Handbook of the History of Logic (pp 233–305). Elsevier: Amsterdam. Vol. 11 - Logic: a history of its central concepts.Google Scholar
  5. Bloom, S. L., Brown, D. J., & Suszko, R. (1970). Some theorems on abstract logics. Algebra i Logika, 9, 274–280.CrossRefGoogle Scholar
  6. Correia, F. (2014). Logical grounds. Review of Symbolic Logic, 7, 31–59.CrossRefGoogle Scholar
  7. Correia, F. (2016). On the logic of factual equivalence. Review of Symbolic Logic, 9, 103–122.CrossRefGoogle Scholar
  8. Destouches-Février, P. (1948). Manifestations et sens de la notion de complémentarité. Dialectica, 2, 383–412.CrossRefGoogle Scholar
  9. Do\(\breve{{\rm s}}\)en, K. (2015). Inferential semantics. In W. Heinrich (Eds), Dag Prawitz on proofs and meaning. Springer International Publishing Switzerland. Outstanding contributions to logic 7.Google Scholar
  10. Fine, Kit (2012). Guide to ground. In Fabrice Correia and Benjamin Schnieder, editors, Metaphysical grounding, pages 37–80. Cambridge University Press, Cambridge.Google Scholar
  11. Grice, H. P. (1975). Logic and conversation. In C. Peter and M. I. Jerry (Eds), Syntax and Semantics 3. Academic Press, New York.Google Scholar
  12. Humberstone, L. (2011). The connectives. Cambridge: MIT Press.Google Scholar
  13. Hurford, J. (1974). Exclusive or inclusive disjunction. Foundations of Language, 11, 409–411.Google Scholar
  14. Kleene, S. C. (1952). Introduction to metamathematics. Amsterdam: North-Holland.Google Scholar
  15. Krämer, S., & Roski, S. (2015). A note on the logic of worldly grounds. Thought, 4, 59–68.Google Scholar
  16. Poggiolesi, F. (2016). On constructing a logic for the notion of complete and immediate formal grounding. Synthese (forthcoming).
  17. Poggiolesi, Francesca. (2016). On defining the notion of complete and immediate formal grounding. Synthese, 193, 3147–3167.CrossRefGoogle Scholar
  18. Rabin, Gabriel Oak, & Rabern, Brian. (2016). Well founding grounding grounding. Journal of Philosophical Logic, 45, 349–379.CrossRefGoogle Scholar
  19. Tiomkin, M. (2013). A sequent calculus for a logic of contingencies. Journal of Applied Logic, 11.Google Scholar
  20. Trogdon, K. (2013). An introduction to grounding. In H. Miguel, S. Benjamin, and S. Alex (Eds), Dependence. Basic Philosophical Concepts, pp 97–122. Philosophia Verlag.Google Scholar
  21. Wansing, H. (2014). Connexive logic. In N. Z. Edward (Ed), The Stanford Encyclopedia of Philosophy. Fall 2014 edition.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science Department, The Technion-IITHaifaIsrael

Personalised recommendations