A novel folic acid hydrogel loading β-cyclodextrin/camptothecin inclusion complex with effective antitumor activity

  • Mingfang MaEmail author
  • Wenqing Shang
  • Ruxiao Jia
  • Ruijiao ChenEmail author
  • Min Zhao
  • Chaoqun Wang
  • Mingyan Tian
  • Shulei Yang
  • Aiyou HaoEmail author
Original Article


Folic acid, as a significant vitamin, is essential for human bodies, especially for pregnant women. However, folic acid hydrogel for drug delivery has not been reported until now. Herein, folic acid hydrogel was prepared by ion inducing method firstly. Then β-cyclodextrin/camptothecin inclusion complex was loaded into folic acid hydrogel successfully by co-assembly. Camptothecin loading folic acid hydrogel has good rheological mechanical property and thermodynamic stability. Moreover, the possible mechanism of hydrogel formation was proposed by energy dispersive spectrometer and small-angle X-ray scattering. Besides, compared to camptothecin itself, camptothecin release rate from camptothecin loaded hydrogel was prolongated remarkably through dialysis experiment. Finally, the cell inhibitory rate of camptothecin loading folic acid hydrogel was increased observably compared to camptothecin itself. Hence, as a green drug delivery system, our folic acid hydrogel has important potential application in medical engineering material.

Graphic Abstract

Herein, a novel β-cyclodextrin/camptothecin inclusion complex loaded folic acid hydrogel was constructed by elaborate design and preparation, which can load camptothecin into folic acid hydrogel effectively. Moreover, compared to camptothecin itself, camptothecin release rate from camptothecin loaded hydrogel was prolongated remarkably through dialysis experiment. Finally, the cell inhibitory rate of camptothecin loading folic acid hydrogel was increased observably compared to camptothecin itself. Hence, as a green drug delivery system, our folic acid hydrogel has important potential application in medical engineering material.


Folic acid Hydrogel Camptothecin Drug delivery Antitumor activity 



We greatly acknowledge financial support by National Natural Science Foundation of China (Grant Nos. 21807041, 21872087), Shandong Provincial Natural Science Foundation (Grant No. ZR2019PB006), Projects of Medical and Health Technology Development Program in Shandong Province (Grant No. 2017WS653), NSFC Cultivation Project of Jining Medical University (Grant No. JYP2018KJ12), the PhD Start-up Scientific Research Foundation of Jining Medical University (Grant No. 2017JYQD03), Supporting Fund for Teacher’s Research of Jining Medical University (Grant No. JY2017KJ038), the Undergraduate Training Programs for Innovation of Jining Medical University (No. cx2018022).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10847_2019_962_MOESM1_ESM.doc (2.5 mb)
Supplementary material 1 (DOC 393 kb)


  1. 1.
    Merino, S., Martín, C., Kostarelos, K., Prato, M., Vázquez, E.: Nanocomposite hydrogels: 3D polymernanoparticle synergies for on-demand drug delivery. ACS Nano 9, 4686–4697 (2015)PubMedCrossRefGoogle Scholar
  2. 2.
    Ramin, M.A., Sindhu, K.R., Appavoo, A., Oumzil, K., Grinstaff, M.W., Chassande, O., Barthélémy, P.: Cation tuning of supramolecular gel properties: a new paradigm for sustained drug delivery. Adv. Mater. 29, 1605227 (2017)CrossRefGoogle Scholar
  3. 3.
    Henise, J., Hearn, B.R., Ashley, G.W., Santi, D.V.: Biodegradable tetra-PEG hydrogels as carriers for a releasable drug delivery system. Bioconjug. Chem. 26, 270–278 (2015)PubMedCrossRefGoogle Scholar
  4. 4.
    Xu, J.K., Strandman, S., Zhu, J.X., Barralet, J., Cerruti, M.: Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials 37, 395–404 (2015)PubMedCrossRefGoogle Scholar
  5. 5.
    Murdan, S.: Electro-responsive drug delivery from hydrogels. J. Controll. Release 92, 1–17 (2003)CrossRefGoogle Scholar
  6. 6.
    Zhou, J.M., Han, P., Liu, M.J., Zhou, H.Y., Zhang, Y.X., Jiang, J.K., Liu, P., Wei, Y., Song, Y.L., Yao, X.: Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed. 56, 10462–10466 (2017)CrossRefGoogle Scholar
  7. 7.
    Kim, D., Kwon, J.E., Park, S.Y.: Fully reversible multistate fluorescence switching: organogel system consisting of luminescent cyanostilbene and turn-on diarylethene. Adv. Funct. Mater. 28, 1706213 (2018)CrossRefGoogle Scholar
  8. 8.
    Li, Q.C., Barrett, D.G., Messersmith, P.B., Holten-Andersen, N.: Controlling hydrogel mechanics via bio-inspired polymer-nanoparticle bond dynamics. ACS Nano 10, 1317–1324 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yuk, H., Lu, B.Y., Zhao, X.H.: Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019)PubMedCrossRefGoogle Scholar
  10. 10.
    Dai, X.Y., Zhang, Y.Y., Gao, L.N., Bai, T., Wang, W., Cui, Y.L., Liu, W.G.: A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 27, 3566–3571 (2015)PubMedCrossRefGoogle Scholar
  11. 11.
    Stumpel, J.E., Gil, E.R., Spoelstra, A.B., Bastiaansen, C.W., Broer, D.J., Schenning, A.P.: Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels. Adv. Funct. Mater. 25, 3314–3320 (2015)CrossRefGoogle Scholar
  12. 12.
    Okesola, B.O., Smith, D.K.: Applying low-molecular weight supramolecular gelators in an environmental setting-self-assembled gels as smart materials for pollutant removal. Chem. Soc. Rev. 45, 4226–4251 (2016)PubMedCrossRefGoogle Scholar
  13. 13.
    Shao, H., Parquette, J.R.: A π-conjugated hydrogel based on an fmoc-dipeptide naphthalene diimide semiconductor. Chem. Commun. 46, 4285–4287 (2010)CrossRefGoogle Scholar
  14. 14.
    Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A.: Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun. 511, 1–6 (2011)Google Scholar
  15. 15.
    Chakraborty, P., Roy, B., Bairia, P., Nandi, A.K.: Improved mechanical and photophysical properties of chitosan incorporated folic acid gel possessing the characteristics of dye and metal ion absorption. Chem. Commun. 22, 20291–20298 (2012)Google Scholar
  16. 16.
    Chakraborty, P., Bairia, P., Roy, B., Nandi, A.K.: Improved mechanical and electronic properties of co-assembled folic acid gel with aniline and polyaniline. ACS Appl. Mater. Interfaces 6, 3615–3622 (2014)PubMedCrossRefGoogle Scholar
  17. 17.
    Pasut, G., Canal, F., Via, L.D., Arpicco, S., Veronese, F.M., Schiavon, O.: Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J. Controll. Release 127, 239–248 (2008)CrossRefGoogle Scholar
  18. 18.
    Yang, Y., Zhang, Y.M., Chen, Y., Zhao, D., Chen, J.T., Liu, Y.: Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem. Eur. J. 18, 4208–4215 (2012)PubMedCrossRefGoogle Scholar
  19. 19.
    Xing, P.Y., Chu, X.X., Du, G.Y., Li, M.Z., Su, J., Hao, A.Y., Hou, Y.H., Li, S.Y., Ma, M.F., Wu, L., Yu, Q.B.: Controllable self-growth of a hydrogel with multiple membranes. RSC Adv. 3, 15237–15244 (2013)CrossRefGoogle Scholar
  20. 20.
    Ni, M.F., Zhang, N., Xia, W., Wu, X., Yao, C.H., Liu, X., Hu, X.Y., Lin, C., Wang, L.Y.: Dramatically promoted swelling of a hydrogel by pillar[6]arene-ferrocene complexation with multistimuli responsiveness. J. Am. Chem. Soc. 138, 6643–6649 (2016)PubMedCrossRefGoogle Scholar
  21. 21.
    Song, X., Wen, Y.T., Zhu, J.L., Zhao, F., Zhang, Z.X., Li, J.: Thermoresponsive delivery of paclitaxel by β-cyclodextrin-based poly(N-isopropylacrylamide) star polymer via inclusion complexation. Biomacromolecules 17, 3957–3963 (2016)PubMedCrossRefGoogle Scholar
  22. 22.
    Yankovsky, I., Bastien, E., Yakavets, I., Khludeyev, I., Lassalle, H., Gräfe, S., Bezdetnaya, L., Zorin, V.: Inclusion complexation with β-cyclodextrin derivatives alters photodynamic activity and biodistribution of meta-tetra(hydroxyphenyl)chlorin. Eur. J. Pharm. Sci. 91, 172–182 (2016)PubMedCrossRefGoogle Scholar
  23. 23.
    Aytac, Z., Ipek, S., Erol, I., Durgun, E., Uyar, T.: Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloid Surf. B 178, 129–136 (2019)CrossRefGoogle Scholar
  24. 24.
    Ma, M.F., Luan, T.X., Yang, M.M., Liu, B., Wang, Y.J., An, W., Wang, B., Tang, R.P., Hao, A.Y.: Self-assemblies of cyclodextrin derivatives modified by ferrocene with multiple stimulus responsiveness. Soft Matter 13, 1534–1538 (2017)PubMedCrossRefGoogle Scholar
  25. 25.
    Li, S.Y., Zhang, L., Wang, B., Ma, M.F., Xing, P.Y., Chu, X.X., Zhang, Y.M., Hao, A.Y.: An easy approach for constructing vesicles by using aromatic molecules with β-cyclodextrin. Soft Matter 11, 1767–1777 (2015)PubMedCrossRefGoogle Scholar
  26. 26.
    Xing, P.Y., Sun, T., Hao, A.Y.: Vesicles from supramolecular amphiphiles. RSC Adv. 3, 24776–24793 (2013)CrossRefGoogle Scholar
  27. 27.
    Sun, T., Yan, H., Liu, G.C., Hao, J.C., Su, J., Li, S.Y., Xing, P.Y., Hao, A.Y.: Strategy of directly employing paclitaxel to construct vesicles. J. Phys. Chem. B 116, 14628–14636 (2012)PubMedCrossRefGoogle Scholar
  28. 28.
    Sun, T., Ma, M.F., Yan, H., Shen, J., Su, J., Hao, A.Y.: Vesicular particles directly assembled from the cyclodextrin/UR-144 supramolecular amphiphiles. Colloid Surf. A 424, 105–112 (2013)CrossRefGoogle Scholar
  29. 29.
    Cheetham, A.G., Zhang, P.C., Lin, Y.A., Lock, L.L., Cui, H.G.: Supramolecular nanostructures formed by anticancer drug assembly. J. Am. Chem. Soc. 135, 2907–2910 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cheetham, A.G., Ou, Y.C., Zhang, P.C., Cui, H.G.: Linker-determined drug release mechanism of free camptothecin from self-assembling drug amphiphiles. Chem. Commun. 50, 6039–6042 (2014)CrossRefGoogle Scholar
  31. 31.
    Kang, J.C., Kumar, V., Yang, D., Chowdhury, P.R., Hohl, R.J.: Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Eur. J. Pharm. Sci. 15, 163–170 (2002)PubMedCrossRefGoogle Scholar
  32. 32.
    Cheng, J.J., Khin, K.T., Jensen, G.S., Liu, A.J., Davis, M.E.: Synthesis of linear, β-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem. 14, 1007–1017 (2003)PubMedCrossRefGoogle Scholar
  33. 33.
    Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., Trotta, M., Zara, G., Cavalli, R.: Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 74, 193–201 (2010)PubMedCrossRefGoogle Scholar
  34. 34.
    Trotta, F., Dianzani, C., Caldera, F., Mognetti, B., Cavalli, R.: The application of nanosponges to cancer drug delivery. Expert Opin. Drug Deliv. 11, 931–941 (2014)PubMedCrossRefGoogle Scholar
  35. 35.
    Ma, M.F., Shang, W.Q., Xing, P.Y., Li, S.Y., Chu, X.X., Hao, A.Y., Liu, G.C., Zhang, Y.M.: A supramolecular vesicle of camptothecin for its water dispersion and controllable releasing. Carbohydr. Res. 402, 208–214 (2015)PubMedCrossRefGoogle Scholar
  36. 36.
    Maia, P.M., Cunha, A.L., Marques, F.F., Aucelio, R.Q.: Room-temperature phosphorimetry for the determination of trace contaminations of camptothecin in anticancer drugs. Microchem. J. 96, 108–113 (2010)CrossRefGoogle Scholar
  37. 37.
    Karlsson, H., Fryknas, M., Larsson, R., Nygren, P.: Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. Exp. Cell Res. 318, 1577–1585 (2012)PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou, C.C., Huang, J.B., Yan, Y.: Chain length dependent alkane/β-cyclodextrin nonamphiphilic supramolecular building blocks. Soft Matter 12, 1579–1589 (2016)PubMedCrossRefGoogle Scholar
  39. 39.
    Sui, J.F., Wang, L.H., Zhao, W.R., Hao, J.C.: Iron-naphthalenedicarboxylic acid gels and their high efficiency in removing arsenic(V). Chem. Commun. 52, 6993–6996 (2016)CrossRefGoogle Scholar
  40. 40.
    Lin, Y.Y., Qiao, Y., Wang, Y.J., Yan, Y., Huang, J.B.: Self-assembled laminated nanoribbon-directed synthesis of noble metallic nanoparticle-decorated silica nanotubes and their catalytic applications. J. Mater. Chem. 22, 18314–18320 (2012)CrossRefGoogle Scholar
  41. 41.
    Zhai, X.H., Bartel, M., Brezesinski, G., Rattay, B., Möhwald, H., Li, J.B.: Small angle X-ray scattering (SAXS) and differential scanning calorimetry (dsc) studies of amide phospholipids. Chem. Phys. Lipids 133, 79–88 (2005)PubMedCrossRefGoogle Scholar
  42. 42.
    Xing, P.Y., Chu, X.X., Li, S.Y., Hou, Y.H., Ma, M.F., Yang, J.S., Hao, A.Y.: Self-recovering β-cyclodextrin gel controlled by good/poor solvent environments. RSC Adv. 3, 22087–22094 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of New Antitumor Drug Molecular Design and Synthesis of Jining Medical University & College of Basic MedicineJining Medical UniversityJiningPeople’s Republic of China
  2. 2.Obstetrical Department of Jining First People’s HospitalJiningPeople’s Republic of China
  3. 3.Key Laboratory of Colloid and Interface Chemistry of Ministry of Education & School of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China

Personalised recommendations