Demonstration of the first known 1:2 host-guest encapsulation of a platinum anticancer complex within a macrocycle

  • Yvonne E. Moussa
  • Natarajan S. Venkataramanan
  • Nial J. WheateEmail author
Original Article


This study examined the ability of the para-sulfonatocalix[8]arene (sCX[8]) macrocycle to encapsulate [Pt(H2O)2(R,R-dach)]2+, the active aquated component of oxaliplatin. Both the free 1R,2R-diaminocyclohexane (dach) ligand and [Pt(H2O)2(R,R-dach)]2+ formed host-guest complexes with sCX[8], as indicated by 1H nuclear magnetic resonance (NMR) spectroscopy and molecular modelling. This interaction uniquely occurred in a 1:2 host-guest stoichiometric ratio, such that one platinum molecule was bound at each of the two sCX[8] pseudo-cavities. The 1H NMR data showed this binding to be predominantly stabilised by hydrophobic effects, hydrogen bonds and electrostatic interactions, the latter of which were evidenced by the lack of host-guest complex formation for the uncharged [PtCl2(R,R-dach)] derivative. Contrastingly, molecular modelling results indicated that host-guest complex formation was predominantly due to hydrogen bonds and electrostatic interactions at the surface of the macrocycle, such that the dach groups of [Pt(H2O)2(R,R-dach)]2+ were projecting away from, and not bound through hydrophobic effects with, the pseudo-cavities of sCX[8]. Guanosine 5′-monophosphate binding studies demonstrated that complexation with the macrocycle did not affect the ability of [Pt(H2O)2(R,R-dach)]2+ to interact with its target, but rather, it was capable of doing so while still bound to sCX[8]. In total, these findings point to the potential role of sCX[8] as a delivery vehicle for other charged platinum complexes.


Cancer Oxaliplatin Host-guest Drug delivery Macrocycle Calixarene 


Supplementary material

10847_2019_960_MOESM1_ESM.xlsx (15 kb)
Supplementary material 1 (XLSX 15 kb)
10847_2019_960_MOESM2_ESM.pdb (19 kb)
Supplementary material 2 (PDB 19 kb)


  1. 1.
    Dong, W., Stephen, J.L.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)CrossRefGoogle Scholar
  2. 2.
    Apps, M.G., Choi, E.H.Y., Wheate, N.J.: The state-of-play and future of platinum drugs. Endocr. Relat. Cancer 22, 219–233 (2015)CrossRefGoogle Scholar
  3. 3.
    Um, I.S., Armstrong-Gordon, E., Moussa, Y.E., Gnjidic, D., Wheate, N.J.: Platinum drugs in the Australian cancer chemotherapy healthcare setting: is it worthwhile for chemists to continue to develop platinums? Inorg. Chim. Acta 492, 177–181 (2019)CrossRefGoogle Scholar
  4. 4.
    Johnstone, T.C., Park, G.Y., Lippard, S.J.: Understanding and improving platinum anticancer drugs—phenanthriplatin. Anticancer Res. 34, 471–476 (2014)PubMedPubMedCentralGoogle Scholar
  5. 5.
    Browning, R.J., Reardon, P.J.T., Parhizkar, M., Pedley, R.B., Edirisinghe, M., Knowles, J.C., Stride, E.: Drug delivery strategies for platinum-based chemotherapy. ACS Nano 11, 8560–8578 (2017)CrossRefGoogle Scholar
  6. 6.
    Gao, C., Zhang, Y., Chen, J., Wang, T., Qian, Y., Yang, B., Dong, P., Zhang, Y.: Targeted drug delivery system for platinum-based anticancer drugs. Mini.-Rev. Med. Chem. 16, 872–891 (2016)CrossRefGoogle Scholar
  7. 7.
    Upadhyay, D., Scalia, S., Vogel, R., Wheate, N., Salama, R., Young, P., Traini, D., Chrzanowski, W.: Magnetised thermo responsive lipid vehicles for targeted and controlled lung drug delivery. Pharm. Res. 29, 2456–2467 (2012)CrossRefGoogle Scholar
  8. 8.
    Pisani, M.J., Wheate, N.J., Keene, F.R., Aldrich-Wright, J.R., Collins, J.G.: Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs. J. Inorg. Biochem. 103, 373–380 (2009)CrossRefGoogle Scholar
  9. 9.
    Ermert, P.: Design, properties and recent application of macrocycles in medicinal chemistry. Chimia 71, 678–702 (2017)CrossRefGoogle Scholar
  10. 10.
    Yudin, A.K.: Macrocycles: lessons from the distant past, recent developments, and future directions. Chem. Sci. 6, 30–49 (2015)CrossRefGoogle Scholar
  11. 11.
    Wang, R., Macartney, D.H.: Cucurbit[7]uril host–guest complexes of the histamine H2-receptor antagonist ranitidine. Org. Biomol. Chem. 6, 1955–1960 (2008)CrossRefGoogle Scholar
  12. 12.
    Wang, R., Bardelang, D., Waite, M., Udachin, K.A., Leek, D.M., Yu, K., Ratcliffe, C.I., Ripmeester, J.A.: Inclusion complexes of coumarin in cucurbiturils. Org. Biomol. Chem. 7, 2435–2439 (2009)CrossRefGoogle Scholar
  13. 13.
    Wheate, N.J., Vora, V., Anthony, N.G., McInnes, F.J.: Host–guest complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril. J. Incl. Phenom. Macrocycl. Chem. 68, 359–367 (2010)CrossRefGoogle Scholar
  14. 14.
    Yin, H., Wang, R.: Applications of cucurbit[n]urils (n=7 or 8) in pharmaceutical sciences and complexation of biomolecules. Isr. J. Chem. 58, 188–198 (2018)CrossRefGoogle Scholar
  15. 15.
    Kuok, K.I., Li, S., Wyman, I.W., Wang, R.: Cucurbit[7]uril: an emerging candidate for pharmaceutical excipients. Ann. N.Y. Acad. Sci. 1398, 108–119 (2017)CrossRefGoogle Scholar
  16. 16.
    Moussa, Y.E., Ong, Y.Q.E., Perry, J.D., Cheng, Z., Kayser, V., Cruz, E., Kim, R.R., Sciortino, N., Wheate, N.J.: Demonstration of in vitro host-guest complex formation and safety of para-sulfonatocalix[8]arene as a delivery vehicle for two antibiotic drugs. J. Pharm. Sci. 107, 3105–3111 (2018)CrossRefGoogle Scholar
  17. 17.
    Zhou, Y., Li, H., Yang, Y.-W.: Controlled drug delivery systems based on calixarenes. Chin. Chem. Lett. 26, 825–828 (2015)CrossRefGoogle Scholar
  18. 18.
    Kalyani, V., Malkhede, D.: p-Sulfonatocalix[8]arene and vitamin C complexation: assessment of photophysical, pKa and antioxidant property. J. Incl. Phenom. Macrocycl. Chem. 87, 179–189 (2017)CrossRefGoogle Scholar
  19. 19.
    Romero, M.A., Mateus, P., Matos, B., Acuña, Á., García-Río, L., Arteaga, J.F., Pischel, U., Basílio, N.: Binding of flavylium ions to sulfonatocalix[4]arene and implication in the photorelease of biologically relevant guests in water. J. Org. Chem. (2019). CrossRefPubMedGoogle Scholar
  20. 20.
    Mikulu, L., Michalicova, R., Iglesias, V., Yawer, M.A., Kaifer, A.E., Lubal, P., Sindelar, V.: pH control on the sequential uptake and release of organic cations by cucurbit[7]uril. Chem. Eur. J. 23, 2350–2355 (2017)CrossRefGoogle Scholar
  21. 21.
    McInnes, F.J., Anthony, N.G., Kennedy, A.R., Wheate, N.J.: Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit[7]uril. Org. Biomol. Chem. 8, 765–773 (2010)CrossRefGoogle Scholar
  22. 22.
    Chaudhary, V.B., Patel, J.K.: Cyclodextrin inclusion complex to enhance solubility of poorly water soluble drugs. Int. J. Pharm. Sci. 4, 68–76 (2013)Google Scholar
  23. 23.
    Alzard, R.H., Bufaroosha, M.S., Al-Shamsi, N., Sohail, A., Al-Dubaili, N., Salem, A.A., Abdou, I.M., Saleh, N.: Solubilization of pyridone-based fluorescent tag by complexation in cucurbit[7]uril. ACS Omega 4, 953–960 (2019)CrossRefGoogle Scholar
  24. 24.
    Wheate, N.J., Dickson, K.A., Kim, R.R., Nematollahi, A., Macquart, R.B., Kayser, V., Yu, G., Church, W.B., Marsh, D.J.: Host-guest complexes of carboxylated pillar[n]arenes with drugs. J. Pharm. Sci. 105, 3615–3625 (2016)CrossRefGoogle Scholar
  25. 25.
    Yousaf, A., Hamid, S.A., Bunnori, N.M., Ishola, A.A.: Applications of calixarenes in cancer chemotherapy: facts and perspectives. Drug Des. Dev. Ther. 9, 2831–2838 (2015)Google Scholar
  26. 26.
    Guo, D.S., Liu, Y.: Supramolecular Chemistry of p-Sulfonatocalix[n]arenes and its biological applications. Acc. Chem. Res. 47, 1925–1934 (2014)CrossRefGoogle Scholar
  27. 27.
    Coleman, A.W., Jebors, S., Cecillon, S., Perret, P., Garin, D., Marti-Battle, D., Moulin, M.: Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J. Chem. 32, 780–782 (2008)CrossRefGoogle Scholar
  28. 28.
    Krause-Heuer, A.M., Wheate, N.J., Tilby, M.J., Pearson, D.G., Ottley, C.J., Aldrich-Wright, J.R.: Substituted beta-cyclodextrin and calix[4]arene as encapsulatory vehicles for platinum(II)-based DNA intercalators. Inorg. Chem. 47, 6880–6888 (2008)CrossRefGoogle Scholar
  29. 29.
    Brown, S.D., Plumb, J.A., Johnston, B.F., Wheate, N.J.: Folding of dinuclear platinum anticancer complexes within the cavity of para-sulphonatocalix[4]arene. Inorg. Chim. Acta 393, 182–186 (2012)CrossRefGoogle Scholar
  30. 30.
    Smith, C.B., Barbour, L.J., Makha, M., Raston, C.L., Sobolev, A.N.: Unlocking the elusive binding cavity in p-sulfonatocalix[8]arene. New J. Chem. 30, 991–996 (2006)CrossRefGoogle Scholar
  31. 31.
    Perret, F., Bonnard, V., Danylyuk, O., Suwinska, K., Coleman, A.W.: Conformational extremes in the supramolecular assemblies of para-sulfonato-calix[8]arene. New J. Chem. 30, 987–990 (2006)CrossRefGoogle Scholar
  32. 32.
    Apps, M.G., Ammit, A.J., Gu, A., Wheate, N.J.: Analysis of montmorillonite clay as a vehicle in platinum anticancer drug delivery. Inorg. Chim. Acta 421, 513–518 (2014)CrossRefGoogle Scholar
  33. 33.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian 16 Rev. C.01. In. Wallingford, CT, (2016)Google Scholar
  34. 34.
    Kleckner, I.R., Foster, M.P.: An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta 1814, 942–968 (2011)CrossRefGoogle Scholar
  35. 35.
    Montes-Navajas, P., Gonzalez-Bejar, M., Scaiano, J.C., Garcia, H.: Cucurbituril complexes cross the cell membrane. Photochemical & photobiological sciences. Biochim. Biophys. Acta 8, 1743–1747 (2009)Google Scholar
  36. 36.
    Khurana, R., Barooah, N., Bhasikuttan, A.C., Mohanty, J.: Modulation in the acidity constant of acridine dye with cucurbiturils: stimuli-responsive pKa tuning and dye relocation into live cells. Org. Biomol. Chem. 15, 8448–8457 (2017)CrossRefGoogle Scholar
  37. 37.
    Wheate, N., Evison, B.J., Herlt, A.J., Phillips, D.R., Collins, J.G.: DNA binding of the anti-cancer platinum complex trans-[(Pt(NH3)2Cl)2 μ-dpzm]2+. Dalton Trans. 18, 3486–3492 (2003)CrossRefGoogle Scholar
  38. 38.
    Wheate, N., Walker, S., Craig, E.G., Oun, R.: The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39, 8113–8127 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Medicine and Health, Sydney Pharmacy SchoolThe University of SydneySydneyAustralia
  2. 2.School of Chemistry and BiotechnologySASTRA Deemed UniversityThanjavurIndia

Personalised recommendations