Advertisement

Binding interactions of bisbenzimidazolyl derivatives with cyclohexanocucurbit[6]uril

  • Li-Mei Zheng
  • Kun Zhang
  • Rui-Lian Lin
  • Xiang-Feng Chu
  • Jing-Xin LiuEmail author
Original Article
  • 27 Downloads

Abstract

The binding properties of cyclohexanocucurbit[6]uril (Cy6Q[6]) host toward three 1,w-bisbenzimidazolyl derivatives (guests 13, with alkyl chain of different lengths as linker) have been analyzed by 1H NMR spectroscopy and isothermal titration calorimetry (ITC) in aqueous solution and X-ray crystallography in solid state. The 1H NMR spectroscopy reveal that all guests can form 1:1 and 1:2 inclusion complexes with Cy6Q[6] macrocyles residing over benzoimidazole groups. The actual binding ratios or modes depend on the amounts of the host. Interestingly, the encapsulation and release of the guests can be controlled through the pH values of the solution. ITC data show that the binding process of host Cy6Q[6] with gusts 13 is driven by enthalpy, which benefits from hydrophobic effects and host–guest interactions. X-ray diffraction analysis provide unambiguous evidence that the benzoimidazole group of the guests 1 and 2 can be encapsulated into the Cy6Q[6] cavity, forming 1:1 host–guest inclusion complexes. The formation of these 1:1 binary inclusion complexes is attributed to the cooperativity of ion–dipole interaction, van der Waals interaction, C–H···π interaction, and hydrogen-bonding interaction.

Graphic abstract

Binding interactions of 1,ω-bisbenzimidazolyl derivatives (guests) with cyclohexanocucurbit[6]uril (Cy6Q[6]) both in aqueous solution and solid state have been investigated by various tools. The results reveal that all guests can form 1:1 or 1:2 inclusion complexes with Cy6Q[6] residing over benzoimidazole groups of the guests.

Keywords

Bisbenzimidazolyl derivatives Cyclohexanocucurbit[6]uril 1H NMR spectroscopy Inclusion complex X-ray crystallography 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21371004), Natural Science Foundation of Anhui Province of China (1808085MB43) and the Key scientific research projects in Colleges and Universities of Henan Province (Grant No. 16A180026).

References

  1. 1.
    Atwood, J.L., Steed, J.W.: Encyclopaedia of supramolecular chemistry. Taylor & Francis, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Kolesnichenko, I.V., Anslyn, E.V.: Practical applications of supramolecular chemistry. Chem. Soc. Rev. 46, 2385–2390 (2017)PubMedCrossRefGoogle Scholar
  3. 3.
    Liu, Z., Nalluri, S.K.M., Stoddart, J.F.: Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459–2478 (2017)PubMedCrossRefGoogle Scholar
  4. 4.
    Zhao, D., Moore, J.S.: Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chem. Commun. 2003(7), 807–818 (2003)CrossRefGoogle Scholar
  5. 5.
    Zhang, W., Moore, J.S.: Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. Angew. Chem. Int. Ed. 45, 4416–4439 (2006)CrossRefGoogle Scholar
  6. 6.
    Jin, Y., Zhang, A., Huang, Y., Zhang, W.: Recent advances in dynamic covalent chemistry. Chem. Commun. 46, 8258–8260 (2010)CrossRefGoogle Scholar
  7. 7.
    Oshovsky, G.V., Reinhoudt, D.N., Verboom, W.: Supramolecular chemistry in water. Angew. Chem. Int. Ed. 46, 2366–2393 (2007)CrossRefGoogle Scholar
  8. 8.
    Harada, A., Takashima, Y., Nakahata, M.: Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc. Chem. Res. 47, 2128–2140 (2014)PubMedCrossRefGoogle Scholar
  9. 9.
    Appel, E.A., Barrio, J., Loh, X.J., Scherman, O.A.: Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012)PubMedCrossRefGoogle Scholar
  10. 10.
    Yu, G.C., Jie, K.C., Huang, F.H.: Supramolecular amphiphiles based on host–guest molecular recognition motifs. Chem. Rev. 115, 7240–7303 (2015)PubMedCrossRefGoogle Scholar
  11. 11.
    Murray, J., Kim, K., Ogoshi, T., Yao, W., Gibb, B.C.: The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  13. 13.
    Kaifer, A.E.: Toward reversible control of cucurbit[n]uril complexes. Acc. Chem. Res. 47, 2160–2167 (2014)PubMedCrossRefGoogle Scholar
  14. 14.
    Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)CrossRefGoogle Scholar
  15. 15.
    Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015)PubMedCrossRefGoogle Scholar
  16. 16.
    Ni, X.L., Xiao, X., Cong, H., Liang, L.L., Chen, K., Chen, X.J., Ji, N.N., Zhu, Q.J., Xue, S.F., Tao, Z.: Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 42, 9480–9508 (2013)PubMedCrossRefGoogle Scholar
  17. 17.
    Barrow, S.J., Kasera, S., Rowland, M.J., Barrio, J., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015)PubMedCrossRefGoogle Scholar
  18. 18.
    Jon, S.Y., Selvapalam, N., Oh, D.H., Kang, J.K., Kim, S.Y., Jeon, Y.J., Lee, J.W., Kim, K.: Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 125, 10186–10187 (2003)PubMedCrossRefGoogle Scholar
  19. 19.
    Wu, F., Wu, L.H., Xiao, X., Zhang, Y.Q., Xue, S.F., Tao, Z., Day, A.I.: Locating the cyclopentano cousins of the cucurbit[n]uril family. J. Org. Chem. 77, 606–611 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Zhao, Y.J., Xue, S.F., Zhu, Q.J., Tao, Z., Zhang, J.X., Wei, Z.B., Long, L.S., Hu, M.L., Xiao, H.P., Day, A.I.: Synthesis of a symmetrical tetrasubstituted cucurbit[6]uril and its host-guest inclusion complex with 2,2′-bipyridine. Chin. Sci. Bull. 49, 1111–1116 (2004)CrossRefGoogle Scholar
  21. 21.
    Zhao, J., Kim, H.J., Oh, J., Kim, S.Y., Lee, J.W., Sakamoto, S., Yamaguchi, K., Kim, K.: Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem. Int. Ed. 40, 4233–4235 (2001)CrossRefGoogle Scholar
  22. 22.
    Vinciguerra, B., Cao, L.P., Cannon, J.R., Zavalij, P.Y., Fenselau, C., Isaacs, L.: Synthesis and self-assembly processes of monofunctionalized cucurbit[7]uril. J. Am. Chem. Soc. 134, 13133–13140 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Singla, P., Luxami, V., Paul, K.: Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Adv. 4, 12422–12440 (2014)CrossRefGoogle Scholar
  24. 24.
    Maiti, B., Chanda, K.: Diversity oriented synthesis of benzimidazole-based biheterocyclic molecules by combinatorial approach: a critical review. RSC Adv. 6, 50384–50413 (2016)CrossRefGoogle Scholar
  25. 25.
    Kim, M.O., Blachly, P.G., Kaus, J.W., McCammon, J.A.: Protocols utilizing constant pH molecular dynamics to compute pH-dependent binding free energies. J. Phys. Chem. B 119, 861–872 (2015)PubMedCrossRefGoogle Scholar
  26. 26.
    Barooah, N., Mohanty, J., Bhasikuttan, A.C.: pH-Mediated stoichiometric switching of cucurbit[8]uril-hoechst-33258 complexes. J. Phys. Chem. B 117, 13595–13603 (2013)PubMedCrossRefGoogle Scholar
  27. 27.
    Barooah, N., Sundararajan, M., Mohanty, J., Bhasikuttan, A.C.: Synergistic effect of intramolecular charge transfer toward supramolecular pKa shift in cucurbit[7]uril encapsulated coumarin dyes. J. Phys. Chem. B 118, 7136–7146 (2014)PubMedCrossRefGoogle Scholar
  28. 28.
    Pischel, U., Uzunova, V.D., Remon, P., Nau, W.M.: Supramolecular logic with macrocyclic input and competitive reset. Chem. Commun. 46, 2635–2637 (2010)CrossRefGoogle Scholar
  29. 29.
    Barooah, N., Mohanty, J., Pal, H., Bhasikuttan, A.C.: Supramolecular assembly of hoechst-33258 with cucurbit[7]uril macrocycle. Phys. Chem. Chem. Phys. 13, 13117–13126 (2011)PubMedCrossRefGoogle Scholar
  30. 30.
    Ge, J.Y., Xue, S.F., Zhu, Q.J., Tao, Z., Zhang, J.X.: Interaction of cucurbit[n = 6 ~ 8]urils and benzimidazole derivatives. J. Incl. Phenom. Macro. Chem. 58, 63–69 (2007)CrossRefGoogle Scholar
  31. 31.
    Mukhopadhyay, C., Ghosh, S., Schmiedekamp, A.M.: Unraveling the molecular recognition of “three methylene spacer” bis(benzimidazolium) moiety by dibenzo-24-crown-8: pseudorotaxanes under study. Org. Biomol. Chem. 10, 1434–1439 (2012)PubMedCrossRefGoogle Scholar
  32. 32.
    Zhu, K., Vukotic, V., Noujeim, N., Loeb, S.J.: Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles. Chem. Sci. 3, 3265–3271 (2012)CrossRefGoogle Scholar
  33. 33.
    Li, L., Clarkson, G.J.: New bis(benzimidazole) cations for threading through dibenzo-24-crown-8. Org. Lett. 9, 497–500 (2007)PubMedCrossRefGoogle Scholar
  34. 34.
    Ghosh, S., Schmiedekamp, A.M., Mukhopadhyay, C.: Bis(benzimidazolium)methane salts: a potential guest for dibenzo-24-crown-8 towards [2]pseudorotaxanes. Tetrahedron 68, 9826–9835 (2012)CrossRefGoogle Scholar
  35. 35.
    Ni, X.L., Yi, J.M., Song, S., Zhang, Y.Q., Xue, S.F., Zhu, Q.J., Tao, Z.: Supramolecular interactions of bisbenzimidazolyl derivatives with cucurbit[7]uril, potential axle molecules bearing a novel fluorescent signal response. Tetrahedron 69, 6219–6222 (2013)CrossRefGoogle Scholar
  36. 36.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009)CrossRefGoogle Scholar
  37. 37.
    Palatinus, L., Chapuis, G.: SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007)CrossRefGoogle Scholar
  38. 38.
    Palatinus, L., Prathapa, S.J., Smaalen, S.: EDMA: a computer program for topological analysis of discrete electron densities. J. Appl. Crystallogr. 45, 575–580 (2012)CrossRefGoogle Scholar
  39. 39.
    Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. Sect. A 64, 112–122 (2008)CrossRefGoogle Scholar
  40. 40.
    Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 71, 3–8 (2015)CrossRefGoogle Scholar
  41. 41.
    Spek, A.L.: Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 65, 148–155 (2009)CrossRefGoogle Scholar
  42. 42.
    Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., Simone, A.D.: Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012)PubMedCrossRefGoogle Scholar
  43. 43.
    Biedermann, F., Schneider, H.J.: Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216–5300 (2016)PubMedCrossRefGoogle Scholar
  44. 44.
    Rebek Jr., J.: Molecular behavior in small spaces. Acc. Chem. Res. 42, 1660–1668 (2009)PubMedCrossRefGoogle Scholar
  45. 45.
    Ajami, D., Rebek Jr., J.: More chemistry in small spaces. Acc. Chem. Res. 46, 990–999 (2013)PubMedCrossRefGoogle Scholar
  46. 46.
    Lin, R.L., Li, J.Q., Liu, J.X., Kaifer, A.E.: The binding interactions between cyclohexanocucurbit[6]uril and alkyl viologens give rise to a range of diverse structures in the solid and the solution phases. J. Org. Chem. 80, 10505–10511 (2015)PubMedCrossRefGoogle Scholar
  47. 47.
    Fang, G.S., Sun, W.Q., Zhao, W.X., Lin, R.L., Tao, Z., Liu, J.X.: Host–guest complexation of di-cyclohexanocucurbit[6]uril and hexa-cyclohexano -cucurbit[6]uril with alkyldiammonium ions: a comparative study. Org. Biomol. Chem. 14, 674–679 (2016)PubMedCrossRefGoogle Scholar
  48. 48.
    Li, Q., Qiu, S.C., Chen, K., Zhang, Y., Wang, R., Huang, Y., Tao, Z., Zhu, Q.-J., Liu, J.X.: Encapsulation of alkyldiammonium ions within two different cavities of twisted cucurbit[14]uril. Chem. Commun. 52, 2589–2592 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Li-Mei Zheng
    • 1
  • Kun Zhang
    • 2
  • Rui-Lian Lin
    • 2
  • Xiang-Feng Chu
    • 2
  • Jing-Xin Liu
    • 2
    Email author
  1. 1.College of Chemistry and Chemical EngineeringHenan University of TechnologyZhengzhouChina
  2. 2.College of Chemistry and Chemical EngineeringAnhui University of TechnologyMaanshanChina

Personalised recommendations