Study of the self-association of molecular tweezers bearing two different arms: influence of the stereoelectronic effects of the arm substituents

  • Béatrice LegouinEmail author
  • Arnaud Bondon
  • Clément Orione
  • Solenn Ferron
  • Philippe Uriac
Original Article


In the general field of molecular recognition, the self-assembly of a tweezer bearing a R(+) usnic acid arm and a substituted 1,8-naphthalimide moiety as a second arm was investigated through a 1H NMR study. Two self-association modes were evidenced: either the usnic acid arms (mode A) or the naphthalimide ones (mode B) were face to face in the center of the dimer. The existence of a third non-symmetrical mode (mode C) has not been evidenced experimentally. The behavior of these tweezers was discussed taking into account the electronic density of the naphtalimide arms and the slow mode A/mode B exchange rate (EXSY experiments). Only the mode A was observed when naphthalimide was either non-substituted (1) or substituted by Br (2). With one or two electrodonating substituents (OCH3 (3) or (OCH3)2 (4) or N(CH3)2 (5)) both modes A and B occured in a 50/50 ratio. This ratio depended on temperature for tweezer 3.


Tweezer Self-association Supramolecular recognition 1H NMR 



The authors Pr D. Jacquemin and Dr J. Graton (CEISAM, Nantes, France) for fruitful discussions, Dr P. Jéhan (SCANMAT, Rennes, France) for mass spectrometry and Dr N. Levoin (Bioprojet-Biotech, France) for charge calculations. We are most grateful to the PRISM core facility (Rennes-Angers, France) for NMR spectrometer access.

Supplementary material

10847_2019_954_MOESM1_ESM.docx (5.7 mb)
Supplementary material 1 (DOCX 5811 kb)


  1. 1.
    Chen, C.-W., Whitlock, H.W.J.: Molecular tweezers: a simple model of bifunctional intercalation. J. Am. Chem. Soc. 100, 4921–4922 (1978)CrossRefGoogle Scholar
  2. 2.
    Hardouin-Lerouge, M., Hudhomme, P., Sallé, M.: Molecular clips and tweezers hosting neutral guests. Chem. Soc. Rev. 40, 30–43 (2011)CrossRefGoogle Scholar
  3. 3.
    Leblond, J., Petitjean, A.: Molecular tweezers: concepts and applications. ChemPhysChem 12, 1043–1051 (2011)CrossRefGoogle Scholar
  4. 4.
    Klärner, F., Kahlert, B.: Molecular tweezers and clips as synthetic receptors. Molecular recognition and dynamics in receptor—substrate complexes. Acc. Chem. Res. 36, 919–932 (2003)CrossRefGoogle Scholar
  5. 5.
    He, Z., Yang, X., Jiang, W.: Synthesis, solid-state structures, and molecular recognition of chiral molecular tweezer and related structures based on a rigid bis-naphthalene cleft. Org. Lett. 17, 3880–3883 (2015)CrossRefGoogle Scholar
  6. 6.
    Düker, M.H., Schäfer, H., Zeller, M., Azov, V.A.: Rationally designed calix[4]arene—pyrrolotetrathiafulvalene receptors for electron-deficient neutral guests. J. Org. Chem. 78, 4905–4912 (2013)CrossRefGoogle Scholar
  7. 7.
    Harmata, M.: Chiral molecular tweezers. Acc. Chem. Res. 37, 862–873 (2004)CrossRefGoogle Scholar
  8. 8.
    Herzog, G., Shmueli, M.D., Levy, L., Engle, L., Gazit, E., Klarner, F.-G., Schrader, T., Bitan, G., Segal, D.: The Lys-specific molecular tweezer, CLR01, modulates aggregation of the mutant p53 DNA binding domain and inhibits its toxicity. Biochemistry 54, 3729–3738 (2015)CrossRefGoogle Scholar
  9. 9.
    Zimmerman, S.C.: A journey in bioinspired supramolecular chemistry: from molecular tweezers to small molecules that target myotonic dystrophy. Beilstein J. Org. Chem. 12, 125–138 (2016)CrossRefGoogle Scholar
  10. 10.
    Bier, D., Mittal, S., Bravo-rodriguez, K., Sowislok, A., Guillory, X., Briels, J., Heid, C., Bartel, M., Wettig, B., Brunsveld, L., Sanchez-garcia, E., Schrader, T., Ottmann, C.: The molecular tweezer CLR01 stabilizes a disordered protein-protein interface. J. Am. Chem. Soc. 139, 16256–16263 (2017)CrossRefGoogle Scholar
  11. 11.
    Vöpel, T., Bravo-rodriguez, K., Mittal, S., Vachharajani, S., Gnutt, D., Sharma, A., Steinhof, A., Fatoba, O., Ellrichmann, G., Nshanian, M., Heid, C., Loo, J.A., Klarner, F., Schrader, T., Bitan, G., Wanker, E.E., Ebbinghaus, S., Sanchez-garcia, E.: Inhibition of huntingtin exon—1 aggregation by the molecular tweezer CLR01. J. Am. Chem. Soc. 139, 5640–5643 (2017)CrossRefGoogle Scholar
  12. 12.
    Valdes, C., Urs, P., Toledo, L.M., Kubik, S.W., Rebek, J.: Synthesis and self-assembly of pseudo-spherical homo- and heterodimeric capsules. J. Am. Chem. Soc. 117, 12733–12745 (1995)CrossRefGoogle Scholar
  13. 13.
    Haino, T., Fujii, T., Fukazawa, Y.: Guest binding and new self-assembly of bisporphyrins. J. Org. Chem. 71, 2572–2580 (2006)CrossRefGoogle Scholar
  14. 14.
    Haino, T., Fujii, T., Watanabe, A., Takayanagi, U.: Supramolecular polymer formed by reversible self-assembly of tetrakisporphyrin. PNAS 106, 1–3 (2009)CrossRefGoogle Scholar
  15. 15.
    Branchi, B., Ceroni, P., Balzani, V., Cartagena, M.C., Klarner, F.-G., Schrader, T., Vogtle, F.: Fluorescent water-soluble molecular clips. Self-association and formation of adducts in aqueous and methanol solutions. New J. Chem. 33, 397–407 (2009)CrossRefGoogle Scholar
  16. 16.
    Chou, T.-C., Li, Y.-J.: Synthesis and molecular assembly of benzenoid ring-mounted U-shaped septuple-bridged [7,7]orthocyclophanes walled by cofacial quinoxaline rings. Tetrahedron 71, 5620–5633 (2015)CrossRefGoogle Scholar
  17. 17.
    Kim, S.K., Lim, J.M., Pradhan, T., Jung, H.S., Lynch, V.M., Kim, J.S., Kim, D., Sessler, J.L.: Self-association and nitroaromatic-induced deaggregation of pyrene substituted pyridine amides. J. Am. Chem. Soc. 136, 495–505 (2014)CrossRefGoogle Scholar
  18. 18.
    Colquhoun, H.M., Zhu, Z., Cardin, C.J., Gan, Y., Drew, M.G.B.: Sterically controlled recognition of macromolecular sequence information by molecular tweezers. J. Am. Chem. Soc. 129, 16163–16174 (2007)CrossRefGoogle Scholar
  19. 19.
    Bosquez, M., Cambray, A., Miralrio, A., Castillo, R., Salcedo, R.: Weak bonds between molecular tweezers and their guests. Comput. Theor. Chem. 1115, 335–343 (2017)CrossRefGoogle Scholar
  20. 20.
    Jaunet-Lahary, T., Jacquemin, D., Legouin, B., Questel, J.-Y.Le, Cupif, J.-F., Toupet, L., Uriac, P., Graton, J.: Dissymmetric molecular tweezers in host-guest complexes: internal or external complexation? J. Phys. Chem. C 119, 3771–3779 (2015)CrossRefGoogle Scholar
  21. 21.
    Legouin, B., Uriac, P., Tomasi, S., Toupet, L., Bondon, A., van de Weghe, P.: Novel chiral molecular tweezer from. Org. Lett. 11, 745–748 (2009)CrossRefGoogle Scholar
  22. 22.
    Graton, J., Legouin, B., Besseau, F., Uriac, P., Le Questel, J.Y., Van De Weghe, P., Jacquemin, D.: Molecular tweezers in host—guest complexes: a computational study through a DFT—D approach. J. Phys. Chem. C 116, 23067–23074 (2012)CrossRefGoogle Scholar
  23. 23.
    Legouin, B., Gayral, M., Uriac, P., Cupif, J.F., Levoin, N., Toupet, L., Van De Weghe, P.: Molecular tweezers: synthesis and formation of host-guest complexes. Eur. J. Org. Chem. 2010, 5503–5508 (2010)CrossRefGoogle Scholar
  24. 24.
    Klarner, F.-G., Nellesen, A., Zienau, J., Ochsenfeld, C., Schrader, T.: Molecular tweezer and clip in aqueous solution: unexpected self-assembly, powerful host—guest complex formation, quantum chemical 1H NMR shift calculation. J. Am. Chem. Soc. 128, 4831–4841 (2006)CrossRefGoogle Scholar
  25. 25.
    Hunter, C.A.: The role of aromatic interactions in molecular recognition. Chem. Soc. Rev. 23, 101 (1994)CrossRefGoogle Scholar
  26. 26.
    Kamieth, M., Klärner, F.-G., Diederich, F.: Modeling the supramolecular properties of aliphatic-aromatic hydrocarbons with convex-concave topology. Angew. Chem. Int. Ed. 37, 3303–3306 (1998)CrossRefGoogle Scholar
  27. 27.
    Corbel, J.-C., Uriac, P., Huet, J., Martin, C.A.E., Advenier, A.: 1-Benzazepine derivatives acting as ATP-dependent potassium-channels antagonists. Eur. J. Med. Chem. 30(1), 3–13 (1995)CrossRefGoogle Scholar
  28. 28.
    Tobe, Y., Naemura, K.: A new entry to [6](1,4)naphthalenophane and [6](1,4)anthracenophane: synthesis of peri-substituted derivatives. Tetrahedron Lett. 36, 939–942 (1995)CrossRefGoogle Scholar
  29. 29.
    Nishio, M., Umezawa, Y., Hirota, M., Takeuchi, Y.: The CH/p interaction: significance in molecular recognition. Tetrahedron 51, 8665–8701 (1995)CrossRefGoogle Scholar
  30. 30.
    Stumpfe, D., Bajorath, J.: Exploring activity cliffs in medicinal chemistry. J. Med. Chem. 55, 2932–2942 (2012)CrossRefGoogle Scholar
  31. 31.
    Stumpfe, D., Hu, Y., Dimova, D., Bajorath, J.: Recent progress in understanding activity cliff s and their utility in medicinal chemistry. J. Med. Chem. 57, 18–28 (2014)CrossRefGoogle Scholar
  32. 32.
    Neel, A.J., Hilton, M.J., Sigman, M.S., Toste, F.D.: Review exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017)CrossRefGoogle Scholar
  33. 33.
    A free software for NMR analysis of molecular systems undergoing chemical exchange, Mestrelab Research, Chemistry Software solutions.
  34. 34.
    Lahore, S., Narkhede, U., Merlini, L., Dallavalle, S.: Total synthesis of the natural product benzo[j]fluoranthene-4,9-diol: an approach to the synthesis of oxygenated benzo[j]fluoranthenes. J. Org. Chem. 78, 10860–10866 (2013)CrossRefGoogle Scholar
  35. 35.
    Sun, Z., Huang, K., Wu, J.: Soluble and stable zethrenebis (dicarboximide) and its quinone. Org. Lett. 12, 4690–4693 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Univ Rennes, CNRS, ISCR– UMR 6226RennesFrance
  2. 2.SCANMATRennesFrance

Personalised recommendations