Improved oral bioavailability of anticancer drug tamoxifen through complexation with water soluble cyclodextrins: in vitro and in vivo evaluation

  • Nazlı ErdoğarEmail author
  • Emirhan Nemutlu
  • Alper B. İskit
  • S. Cihan Kara
  • Zeynep Şafak Teksin
  • Erem Bilensoy
Original Article


Tamoxifen (TMX), a class II antiestrogen drug consistent with the biopharmaceutical classification system, shows low plasma levels leading to therapeutic failure as a result of poor aqueous solubility. Complexation with multifunctional excipients cyclodextrins (CDs) is an effective technique to increase the bioavailability of low water-soluble drugs in oral dosage forms. In this study, solid complexes were obtained with three cyclodextrins (methyl-beta-cyclodextrin (M-β-CD), hydroxypropyl-beta-cyclodextrin (HP-β-CD) and sulfobutyl ether β-cyclodextrin (SBE7-β-CD)) using co-lyophilization or kneading methods. Physicochemical characterization of solid complexes were performed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The obtained results demonstrated that co-lyophilization method comprises stable inclusion complexes between TMX and cyclodextrins. Dissolution study exhibited that aqueous solubility of TMX was significantly enhanced by complexation with methyl-beta-CD. Consequently, tablet formulation using co-lyophilized complex of TMX and M-β-CD (1:1) with drug dose equivalent to 10 mg was prepared by direct compression method. 99% drug was released from the formulation at the end of 30 min. From the comparative results of dissolution study, it was found that the prepared formulation showed better release properties than commercial TMX tablets. Animal studies were performed with tablet formulation of TMX:M-β-CD and commercial tablet formulation administered to Sprague–Dawley rats by oral gavage. Peak concentration (Cmax) of tablet formulation containing TMX/M-β-CD inclusion complex in mice was efficaciously enhanced twofold over commercial tablet. In conclusion, complexation of TMX with M-β-CD gives a more effective tablet formulation with improved dissolution and enhanced oral bioavailability which can be promising for the formulation of tamoxifen.


Oral bioavailability Tamoxifen Cyclodextrin Complexation Pharmacokinetics 



Alper B. Iskit has been supported by the Turkish Academy of Sciences, in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2001-2-11).


  1. 1.
    Buchanan, C.M., Buchanan, N.L., Edgar, K.J., Little, J.L., Malcolm, M.O., Ruble, K.M., et al.: Pharmacokinetics of tamoxifen after intravenous and oral dosing of tamoxifen-hydroxybutenyl-beta-cyclodextrin formulations. J. Pharm. Sci. 96(3), 644–660 (2007)PubMedCrossRefGoogle Scholar
  2. 2.
    Park, W.C., Jordan, V.C.: Selective estrogen receptor modulators (SERMS) and their roles in breast cancer prevention. Trends Mol. Med. 8(2), 82–88 (2002)PubMedCrossRefGoogle Scholar
  3. 3.
    Jain, S., Heeralal, B., Swami, R., Swarnakar, N.K., Kushwah, V.: Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles. AAPS PharmSciTech 19(1), 460–469 (2018)PubMedCrossRefGoogle Scholar
  4. 4.
    Hard, G.C., Iatropoulos, M.J., Jordan, K., Radi, L., Kaltenberg, O.P., Imondi, A.R., et al.: Major difference in the hepatocarcinogenicity and DNA adduct forming ability between toremifene and tamoxifen in female Crl-Cd(Br) rats. Cancer Res. 53(19), 4534–4541 (1993)PubMedGoogle Scholar
  5. 5.
    McVie, J.G., Simonetti, G.P., Stevenson, D., Briggs, R.J., Guelen, P.J., de Vos, D.: The bioavailability of Tamoplex (tamoxifen). Part 1. A pilot study. Methods Find. Exp. Clin. Pharmacol. 8(8), 505–512 (1986)PubMedGoogle Scholar
  6. 6.
    Shin, S.C., Choi, J.S., Li, X.: Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int. J. Pharm. 313(1–2), 144–149 (2006)PubMedCrossRefGoogle Scholar
  7. 7.
    Elnaggar, Y.S., El-Massik, M.A., Abdallah, O.Y.: Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization. Int. J. Pharm. 380(1–2), 133–141 (2009)PubMedCrossRefGoogle Scholar
  8. 8.
    Layek, B., Mukherjee, B.: Tamoxifen citrate encapsulated sustained release liposomes: preparation and evaluation of physicochemical properties. Sci. Pharm. 78(3), 507–515 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Beig, A., Agbaria, R., Dahan, A.: Oral delivery of lipophilic drugs: the tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations. PLoS ONE 8(7), e68237 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Shete, H.K., Selkar, N., Vanage, G.R., Patravale, V.B.: Tamoxifen nanostructured lipid carriers: enhanced in vivo antitumor efficacy with reduced adverse drug effects. Int. J. Pharm. 468(1–2), 1–14 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Jena, S.K., Singh, C., Dora, C.P., Suresh, S.: Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int. J. Pharm. 473(1–2), 1–9 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., Onoue, S.: Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm. 420(1), 1–10 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Desai, S., Poddar, A., Sawant, K.: Formulation of cyclodextrin inclusion complex-based orally disintegrating tablet of eslicarbazepine acetate for improved oral bioavailability. Mater. Sci. Eng. C 58, 826–834 (2016)CrossRefGoogle Scholar
  14. 14.
    Torne, S., Darandale, S., Vavia, P., Trotta, F., Cavalli, R.: Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm. Dev. Technol. 18(3), 619–625 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Piao, H., Yang, L., Piao, H., Wang, P., Shi, H., Fang, L., et al.: A pre-formulation study of a polymeric solid dispersion of paclitaxel prepared using a quasi-emulsion solvent diffusion method to improve the oral bioavailability in rats. Drug Dev. Ind. Pharm. 42(3), 353–363 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rumondor, A.C., Dhareshwar, S.S., Kesisoglou, F.: Amorphous solid dispersions or prodrugs: complementary strategies to increase drug absorption. J. Pharm. Sci. 105(9), 2498–2508 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Junyaprasert, V.B., Morakul, B.: Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J. Pharm. Sci. 10(1), 13–23 (2015)CrossRefGoogle Scholar
  18. 18.
    Dehghani, F., Farhadian, N., Golmohammadzadeh, S., Biriaee, A., Ebrahimi, M., Karimi, M.: Preparation, characterization and in vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur. J. Pharm. Sci. 96, 479–489 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chowdhury, N., Vhora, I., Patel, K., Bagde, A., Kutlehria, S., Singh, M.: Development of hot melt extruded solid dispersion of tamoxifen citrate and resveratrol for synergistic effects on breast cancer cells. AAPS PharmSciTech 19(2), 792–802 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3(12), 1023–1035 (2004)CrossRefGoogle Scholar
  21. 21.
    Shukla, J., Sharma, U., Kar, R., Varma, I.K., Juyal, S., Jagannathan, N.R., et al.: Tamoxifen-2-hydroxylpropyl-beta-cyclodextrin-aggregated nanoassembly for nonbreast estrogen-receptor-positive cancer therapy. Nanomedicine 4(8), 895–902 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Shangguan, L.Q., Chen, Q., Shi, B.B., Huang, F.H.: Enhancing the solubility and bioactivity of anticancer drug tamoxifen by water-soluble pillar[6]arene-based host-guest complexation. Chem. Commun. 53(70), 9749–9752 (2017)CrossRefGoogle Scholar
  23. 23.
    Loftsson, T., Jarho, P., Masson, M., Jarvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2(2), 335–351 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Singh, A., Worku, Z.A., Van den Mooter, G.: Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin. Drug Deliv. 8(10), 1361–1378 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gidwani, B., Vyas, A.: A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Biomed. Res. Int. 2015, 198268 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zhang, X., Zhang, T., Lan, Y., Wu, B., Shi, Z.: Nanosuspensions containing oridonin/HP-beta-cyclodextrin inclusion complexes for oral bioavailability enhancement via improved dissolution and permeability. AAPS PharmSciTech 17(2), 400–408 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Yao, Y., Xie, Y., Hong, C., Li, G., Shen, H., Ji, G.: Development of a myricetin/hydroxypropyl-beta-cyclodextrin inclusion complex: preparation, characterization, and evaluation. Carbohydr. Polym. 110, 329–337 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bilensoy, E., Dogan, L., Sen, M., Hincal, A.: Complexation behavior of antiestrogen drug tamoxifen citrate with natural and modified beta-cyclodextrins. J. Incl. Phenom. Macrocycl. 57(1–4), 651–655 (2007)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Gjerde, J., Kisanga, E.R., Hauglid, M., Holm, P.I., Mellgren, G., Lien, E.A.: Identification and quantification of tamoxifen and four metabolites in serum by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1082(1), 6–14 (2005)PubMedCrossRefGoogle Scholar
  31. 31.
    Patel, H.M., Suhagia, B.N., Shah, S.A., Rathod, I.S., Parmar, V.K.: Preparation and characterization of etoricoxib-beta-cyclodextrin complexes prepared by the kneading method. Acta Pharm. 57(3), 351–359 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    Sapkal, N.P., Kilor, V.A., Bhusari, K.P., Daud, A.S.: Evaluation of some methods for preparing gliclazide beta-cyclodextrin inclusion complexes. Trop. J. Pharm. Res. 6(4), 833–840 (2007)CrossRefGoogle Scholar
  33. 33.
    Shaker, D.S., Shaker, M.A., Hanafy, M.S.: Cellular uptake, cytotoxicity and in vivo evaluation of Tamoxifen citrate loaded niosomes. Int. J. Pharm. 493(1–2), 285–294 (2015)PubMedCrossRefGoogle Scholar
  34. 34.
    Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6(2), E329–E357 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Fenyvesi, E., Szeman, J., Csabai, K., Malanga, M., Szente, L.: Methyl-beta-cyclodextrins: the role of number and types of substituents in solubilizing power. J. Pharm. Sci. 103(5), 1443–1452 (2014)PubMedCrossRefGoogle Scholar
  36. 36.
    Aloisio, C., Longhi, M.: Diloxanide furoate binary complexes with beta-, methyl-beta-, and hydroxypropyl-beta-cyclodextrins: inclusion mode, characterization in solution and in solid state and in vitro dissolution studies. Pharm. Dev. Technol. 23(7), 723–731 (2018)PubMedCrossRefGoogle Scholar
  37. 37.
    de Freitas, M.R., Rolim, L.A., Soares, M.F.D., Rolim-Neto, P.J., de Albuquerque, M.M., Soares-Sobrinho, J.L.: Inclusion complex of methyl-beta-cyclodextrin and olanzapine as potential drug delivery system for schizophrenia. Carbohydr. Polym. 89(4), 1095–1100 (2012)PubMedCrossRefGoogle Scholar
  38. 38.
    Rudrangi, S.R., Trivedi, V., Mitchell, J.C., Wicks, S.R., Alexander, B.D.: Preparation of olanzapine and methyl-beta-cyclodextrin complexes using a single-step, organic solvent-free supercritical fluid process: an approach to enhance the solubility and dissolution properties. Int. J. Pharm. 494(1), 408–416 (2015)PubMedCrossRefGoogle Scholar
  39. 39.
    Rudrangi, S.R., Bhomia, R., Trivedi, V., Vine, G.J., Mitchell, J.C., Alexander, B.D., et al.: Influence of the preparation method on the physicochemical properties of indomethacin and methyl-beta-cyclodextrin complexes. Int. J. Pharm. 479(2), 381–390 (2015)PubMedCrossRefGoogle Scholar
  40. 40.
    Zia, V., Rajewski, R.A., Stella, V.J.: Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of (SBE)7 M-beta-CD to HP-beta-CD. Pharm. Res. 18(5), 667–673 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Másson, M., Loftsson, T., Jónsdóttir, S., Fridriksdóttir, H., Petersen, D.S.: Stabilisation of ionic drugs through complexation with non-ionic and ionic cyclodextrins. Int. J. Pharm. 164(1–2), 45–55 (1998)CrossRefGoogle Scholar
  42. 42.
    Conceição, J., Adeoye, O., Cabral-Marques, H.M., Lobo, J.M.S.: Cyclodextrins as excipients in tablet formulations. Drug Discov. Today 23(6), 1274–1284 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sharma, N., Baldi, A.: Exploring versatile applications of cyclodextrins: an overview. Drug Deliv. 23(3), 739–757 (2016)PubMedPubMedCentralGoogle Scholar
  44. 44.
    Marzo, A.: Crossover design in tamoxifen bioequivalence: a borderline situation. J. Pharm. Pharmacol. 50(12), 1433–1434 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Marzo, A., Fibbioli, M., Marone, C., Cerutti, B.: The degree of predictivity in pilot studies on six subjects in bioequivalence trials. Pharmacol. Res. 49(3), 283–286 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Adeoye, O., Cabral-Marques, H.: Cyclodextrin nanosystems in oral drug delivery: a mini review. Int. J. Pharm. 531(2), 521–531 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Irie, T., Uekama, K.: Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86(2), 147–162 (1997)PubMedCrossRefGoogle Scholar
  48. 48.
    Calleja, P., Huarte, J., Agueros, M., Ruiz-Gaton, L., Espuelas, S., Irache, J.M.: Molecular buckets: cyclodextrins for oral cancer therapy. Ther. Deliv. 3(1), 43–57 (2012)PubMedCrossRefGoogle Scholar
  49. 49.
    Thompson, D.O.: Cyclodextrins—enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 14(1), 1–104 (1997)PubMedCrossRefGoogle Scholar
  50. 50.
    Sajeesh, S., Bouchemal, K., Marsaud, V., Vauthier, C., Sharma, C.P.: Cyclodextrin complexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J. Controll. Release 147(3), 377–384 (2010)CrossRefGoogle Scholar
  51. 51.
    Boulmedarat, L., Piel, G., Bochot, A., Lesieur, S., Delattre, L., Fattal, E.: Cyclodextrin-mediated drug release from liposomes dispersed within a bioadhesive gel. Pharm. Res. 22(6), 962–971 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Mohammad, N., Malvi, P., Meena, A.S., Singh, S.V., Chaube, B., Vannuruswamy, G., et al.: Cholesterol depletion by methyl-beta-cyclodextrin augments tamoxifen induced cell death by enhancing its uptake in melanoma. Mol. Cancer 13, 204 (2014)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Nazlı Erdoğar
    • 1
    Email author
  • Emirhan Nemutlu
    • 2
  • Alper B. İskit
    • 3
  • S. Cihan Kara
    • 3
  • Zeynep Şafak Teksin
    • 4
  • Erem Bilensoy
    • 1
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyHacettepe UniversitySıhhiyeTurkey
  2. 2.Department of Analytical Chemistry, Faculty of PharmacyHacettepe UniversitySıhhiyeTurkey
  3. 3.Department of Pharmacology, Faculty of MedicineHacettepe UniversitySıhhiyeTurkey
  4. 4.Division of Pharmacokinetics and Biopharmaceutics, Department of Pharmaceutical Technology, Faculty of PharmacyGazi UniversityYenimahalleTurkey

Personalised recommendations