Polypseudorotaxane-based multiblock copolymers prepared via in situ ATRP of NIPAAm initiated by inclusion complex having a feeding ratio of 4 β-CDs to ferrocene containing initiator

  • Nannan Duan
  • Lin Ye
  • Ai-ying Zhang
  • Zeng-guo FengEmail author
Original Article


A series of PPR-based multiblock copolymers were prepared by using a PPR self-assembled from a distal 2-bromoisobutyryl end-capped ferrocenyl containing derivative Br-TEG-Fc-TEG-Br with 4 β-CDs as initiator to initiate the in situ ATRP of NIPAAm in aqueous solution at room temperature. After the ATRP, about 2 β-CDs were resided on the polymeric backbone through a 7 day dialysing purification, but those β-CDs were all slipped off the polymeric chain through a further 7 day dialysing treatment. It suggested that the resulting multiblock copolymers are really the PPR-based instead of the PR-based ones showing an impeded dethreading behavior of β-CDs and the PNIPAAm blocks attached are not bulky enough as polymeric stoppers to end-cap the β-CD-TEG-Fc-TEG PPRs into the PR-based multiblock copolymers.

Graphic abstract

A series of PPR-based multiblock copolymers were prepared by using a PPR self-assembled from Br-TEG-Fc-TEG-Br with 4 β-CDs as initiator to initiate the aqueous ATRP of NIPAAm. After the polymerization there are about 2 β-CDs still entrapped on the polymeric chain through a 7 day dialyzing purification. Those threaded β-CDs are all slipped off the polymeric backbone through a further 7 day dialyzing treatment.


β-Cyclodextrin Ferrocene Poly(N-isopropylacrylamide) ATRP Polypseudorotaxane 



We thank Prof. Gerhard Wenz for the many helpful comments and discussions. This work was supported by the National Natural Science Foundation of China (No. 21774016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wenz, G., Han, B.-H., Müller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Harada, A., Hashidzume, A., Yamaguchi, H., Takashima, Y.: Polymeric rotaxanes. Chem. Rev. 109, 5974–6023 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Higashi, T., Iohara, D., Motoyama, K., Arima, H.: Supramolecular pharmaceutical sciences: a novel concept combining pharmaceutical sciences and supramolecular chemistry with a focus on cyclodextrin-based supramolecules. Chem. Pharm. Bull. 66, 207–216 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Harada, A., Kamachi, M.: Complex formation between poly (ethylene glycol) and α-cyclodextrin. Macromolecules 23, 2821–2823 (1990)CrossRefGoogle Scholar
  6. 6.
    Harada, A., Kamachi, M.: Complex-formation between cyclodextrin and poly(propylene glycol). J. Chem. Soc. Chem. Commun. 19, 1322–1323 (1990)CrossRefGoogle Scholar
  7. 7.
    Harada, A., Li, J., Kamachi, M.: Complex-formation between poly(methyl vinyl ether) and γ-cyclodextrin. Chem. Lett. 22, 237–240 (1993)CrossRefGoogle Scholar
  8. 8.
    Harada, A.: Design and construction of supramolecular architectures consisting of cyclodextrins and polymers. Adv. Polym. Sci. 133, 141–191 (1997)CrossRefGoogle Scholar
  9. 9.
    Tan, S., Ladewig, K., Fu, Q., Blencowe, A., Qiao, G.G.: Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol. Rapid Commun. 35, 1166–1184 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chen, Y., Zhang, Y.M., Liu, Y.: Multidimensional nanoarchitectures based on cyclodextrins. Chem. Commun. 46, 5622–5633 (2010)CrossRefGoogle Scholar
  11. 11.
    Araki, J., Ito, K.: Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter 3, 1456–1473 (2007)CrossRefGoogle Scholar
  12. 12.
    Fang, L., Olson, M.A., Benitez, D., Tkatchouk, E., Goddard, W.A., Stoddart, J.F.: Mechanically bonded macromolecules. Chem. Soc. Rev. 39, 17–29 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Terao, J.: Permethylatedcyclodextrin-based insulated molecular wires. Polym. Chem. 2, 2444–2452 (2011)CrossRefGoogle Scholar
  14. 14.
    Tardy, B.L., Dam, H.H., Kamphuis, M.M.J., Richardson, J.J., Caruso, F.: Self-assembled stimuli-responsive polyrotaxane core–shell particles. Biomacromol 15, 53–59 (2014)CrossRefGoogle Scholar
  15. 15.
    Noda, Y., Hayashi, Y., Ito, K.: From topological gels to slide-ring materials. J. Appl. Polym. Sci. 131, 40509 (2014)CrossRefGoogle Scholar
  16. 16.
    Kali, G., Eisenbarth, H., Wenz, G.: One pot synthesis of a polyisoprene polyrotaxane and conversion to a slide-ring gel. Macromol. Rapid Commun. 37, 67–72 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Imran, A.B., Esaki, K., Gotoh, H., Seki, T., Ito, K., Sakai, Y., Takeoka, Y.: Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5, 5124 (2014)CrossRefGoogle Scholar
  18. 18.
    Choi, S., Kwon, T., Coskun, A., Choi, J.W.: Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Imholt, L., Dong, D., Bedrov, D., Cekic-Laskovic, I., Winter, M., Brunklaus, G.: Supramolecular self-assembly of methylated rotaxanes for solid polymer electrolyte application. ACS Macro Lett. 7, 881–885 (2018)CrossRefGoogle Scholar
  20. 20.
    Tong, X.M., Yang, F.: Sliding hydrogels with mobile molecular ligands and cross-links as 3D stem cell niche. Adv. Mater. 28, 7257–7263 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jiang, L., Kato, K., Mayumi, K., Yokoyama, H., Ito, K.: One-pot synthesis and characterization of polyrotaxane–silica hybrid aerogel. ACS Macro Lett. 6, 281–286 (2017)CrossRefGoogle Scholar
  22. 22.
    Wang, J., Zhang, X.: Binary crystallized supramolecular aerogels derived from host–guest inclusion complexes. ACS Nano 9, 11389–11397 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Tamura, A., Yui, N.: Polyrotaxane-based systemic delivery of β-cyclodextrins for potentiating therapeutic efficacy in a mouse model of Niemann-Pick type C disease. J. Control. Release 269, 148–158 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Miyamae, K., Nakahata, M., Takashima, Y., Harada, A.: Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew. Chem. Int. Ed. 54, 8984–8987 (2015)CrossRefGoogle Scholar
  25. 25.
    Jiang, L., Liu, C., Mayumi, K., Kato, K., Yokoyama, H., Ito, K.: Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem. Mater. 30, 5013–5019 (2018)CrossRefGoogle Scholar
  26. 26.
    Akae, Y., Sogawa, H., Takata, T.: Synthesis of a structure-definite α-cyclodextrin-based macromolecular [3]rotaxane using a size-complementary method. Angew. Chem. Int. Ed. 57, 11742–11746 (2018)CrossRefGoogle Scholar
  27. 27.
    Sawada, J., Aoki, D., Otsuka, H., Takata, T.: A guiding principle for strengthening crosslinked polymers: synthesis and application of mobility-controlling rotaxane crosslinkers. Angew. Chem. Int. Ed. 58, 1–5 (2019)CrossRefGoogle Scholar
  28. 28.
    Zhang, X.W., Zhu, X.Q., Tong, X.M., Ye, L., Zhang, A.Y., Feng, Z.G.: Novel main-chain polyrotaxanes synthesized via ATRP of HPMA in aqueous media. J. Polym. Sci. Pol. Chem. 46, 5283–5293 (2008)CrossRefGoogle Scholar
  29. 29.
    Tong, X.M., Zhang, X.W., Ye, L., Zhang, A.Y., Feng, Z.G.: Synthesis and characterization of block copolymers comprising a polyrotaxane middle block flanked by two brush-like PCL blocks. Soft Matter 5, 1848–1855 (2009)CrossRefGoogle Scholar
  30. 30.
    Wang, J., Gao, P., Ye, L., Zhang, A.Y., Feng, Z.G.: Solvent- and thermoresponsive polyrotaxanes with β-cyclodextrin dispersed/aggregated structures on a Pluronic F127 backbone. J. Phys. Chem. B. 114, 5342–5349 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhang, X.W., Zhu, X.Q., Ke, F.Y., Ye, L., Chen, E.Q., Zhang, A.Y., Feng, Z.G.: Preparation and self-assembly of amphiphilic triblock copolymers with polyrotaxane as a middle block and their application as carrier for the controlled release of Amphotericin B. Polymer 50, 4343–4351 (2009)CrossRefGoogle Scholar
  32. 32.
    Jiang, L., Gao, Z.M., Ye, L., Zhang, A.Y., Feng, Z.G.: A tumor-targeting nano doxorubicin delivery system built from amphiphilic polyrotaxane-based block copolymers. Polymer 54, 5188–5198 (2013)CrossRefGoogle Scholar
  33. 33.
    Harada, A., Takahashi, S.: Preparation and properties of cyclodextrin inclusion compounds of organometallic complexes. Ferrocene inclusion compounds. J. Incl. Phenom. 2, 791–798 (1984)CrossRefGoogle Scholar
  34. 34.
    Wang, L.Y., Cheng, P.Z., Guo, M.Y.: Stretchable and functional supramolecular hydrogels based on the template effect of poly(β-cyclodextrin). Acta Polym. Sin. 8, 1097–1106 (2018)Google Scholar
  35. 35.
    Wang, J., Li, S., Ye, L., Zhang, A.Y., Feng, Z.G.: Formation of a polypseudorotaxane via self-assembly of γ-cyclodextrin with poly(N-isopropylacrylamide). Macromol. Rapid Commun. 33, 1143–1148 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Narayanan, G., Boy, R., Gupta, B.S., Tonelli, A.E.: Analytical techniques for characterizing cyclodextrins and their inclusion complexes with large and small molecular weight guest molecules. Polym. Test. 62, 402–439 (2017)CrossRefGoogle Scholar
  37. 37.
    Kong, T., Lin, J., Ye, L., Zhang, A.Y., Feng, Z.G.: Synthesis of water soluble polyrotaxanes by end-capping polypseudorotaxanes of γ-CDs with PHEMA-PPO-PEO-PPO-PHEMA using ATRP of MPC. Polym. Chem. 6, 5832–5837 (2015)CrossRefGoogle Scholar
  38. 38.
    Hapiot, F., Tilloy, S., Monflier, E.: Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev. 106, 767–781 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lazzara, G., Olofsson, G., Alfredsson, V., Zhu, K., Nyströmb, B., Schillön, K.: Temperature-responsive inclusion complex of cationic PNIPAAM diblock copolymer and γ-cyclodextrin. Soft Matter 8, 5043–5054 (2012)CrossRefGoogle Scholar
  40. 40.
    Duan, N., Lu, H., Ye, L., Zhang, A.Y., Feng, Z.G.: Unexpected polypseudoro-taxanes formed from self-assembly of β-cyclodextrins with poly(N-isopropylacryl-amide) homo- and copolymers. J. Phys. Chem. B. 123, 5004–5013 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wang, J., Gao, P., Ye, L., Zhang, A.Y., Feng, Z.G.: Dual thermoresponsive polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated with self-assemblies of Br end-capped Pluronic F127 with β-cyclodextrins. Polym. Chem. 2, 931–940 (2011)CrossRefGoogle Scholar
  42. 42.
    Wang, J., Ye, L., Zhang, A.Y., Feng, Z.G.: Novel triblock copolymers comprising a polyrotaxane middle block flanked by PNIPAAm blocks showing both thermo- and solvent-response. J. Mater. Chem. 21, 3243–3250 (2011)CrossRefGoogle Scholar
  43. 43.
    Jiang, L., Ye, L., Zhang, A.Y., Feng, Z.G.: Self-assembly of polyrotaxanes synthesized via click chemistry of azido-endcapped PNIPAAm-b-Pluronic F68-b-PNIPAAm/γ-CD with propargylamine-substituted β-CDs. Macromol. Chem. Phys. 215, 1022–1029 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations