Tripodal tris(diamide) receptor having H-bond donors and acceptors on trindane platform for H2PO4 recognition

  • Gi-Dong Kim
  • Shilpa Bothra
  • Suban K. Sahoo
  • Heung-Jin ChoiEmail author
Original Article


A new C3v-symmetric tris(diamide) receptor 2 possessing both H-bond donor and acceptor sites was synthesized and characterized by various spectral data. The anion recognition ability of receptor 2 was investigated by 1H NMR in DMSO-d6. Among the tested anions (F, Cl, Br, I, NO3, HSO4 and H2PO4), the receptor 2 shows high selectivity towards H2PO4 anion. The amide-NH protons peaks of receptor 2 at δ 10.42 and δ 8.23 ppm were broadened and shifted to downfield region in the presence of H2PO4. The appended arms with tris(diamide) H-bond donors and pyridine H-bond acceptors of receptor 2 provide a preorganized cavity to encapsulate the H2PO4 through multiple hydrogen bonds. The 1H NMR titration measures the binding constant (Ka) of 293 M−1 for the host–guest complex formed between receptor 2 and H2PO4. Further, the possible 3D structure of receptor 2 and its complex with H2PO4 anion was proposed through density functional theory method.


Trindane Tripodal anion receptor Tris(diamide) H2PO4 1H NMR DFT 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2017R1D1A1B03032108).

Supplementary material

10847_2019_937_MOESM1_ESM.docx (619 kb)
Supplementary material 1 (DOCX 618 kb)


  1. 1.
    Bregovic, V.B., Basaric, N., Mlinaric-Majerski, K.: Anion binding with urea and thiourea derivatives. Coord. Chem. Rev. 295, 80–124 (2015)CrossRefGoogle Scholar
  2. 2.
    Bozzetti, V., Tagliabue, P.: Metabolic bone disease in preterm newborn: an update on nutritional issues. Ital. J. Pediatr. 35, 20 (2009)CrossRefGoogle Scholar
  3. 3.
    Borse, V., Jain, P., Sadawana, M., Srivastava, R.: ‘Turn-on’ fluorescence assay for inorganic phosphate sensing. Sens. Actuator B 225, 340–347 (2016)CrossRefGoogle Scholar
  4. 4.
    Khoshniat, S., Bourgine, A., Julien, M., Weiss, P., Guicheux, J., Beck, L.: The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell. Mol. Life Sci. 68, 205–218 (2011)CrossRefGoogle Scholar
  5. 5.
    Sandin, K., Kloo, L., Nevsten, P., Wallenberg, R.L., Olsson, L.-F.: Formation of carbonated apatite particles from a supersaturated inorganic blood serum model. J. Mater. Sci. Mater. Med. 20, 1677–1687 (2009)CrossRefGoogle Scholar
  6. 6.
    Gale, P.A., Davis, J.T., Quesada, R.: Anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev. 46, 2497–2519 (2017)CrossRefGoogle Scholar
  7. 7.
    Berrocal, M.J., Cruz, A., Badr, I.H., Bachas, L.G.: Tripodal ionophore with sulfate recognition properties for anion-selective electrodes. Anal. Chem. 72, 5295–5299 (2000)CrossRefGoogle Scholar
  8. 8.
    Reinoso-García, M.M., Dijkman, A., Verboom, W., Reinhoudt, D.N., Malinowska, E., Wojciechowska, D., Pietrzak, M., Selucky, P.: Metal complexation by tripodal N-acyl (thio) urea and picolin (thio) amide compounds: synthesis/extraction and potentiometric studies. Eur. J. Org. Chem. 2005, 2131–2138 (2005)CrossRefGoogle Scholar
  9. 9.
    Custelcean, R.: Urea-functionalized crystalline capsules for recognition and separation of tetrahedral oxoanions. Chem. Commun. 49, 2173–2182 (2013)CrossRefGoogle Scholar
  10. 10.
    Dutta, R., Ghosh, P.: Recent developments in anion induced capsular self-assemblies. Chem. Commun. 50, 10538–10554 (2014)CrossRefGoogle Scholar
  11. 11.
    Dutta, R., Ghosh, P.: Artificial receptors for nitrate: a comprehensive overview. Chem. Commun. 51, 9070–9084 (2015)CrossRefGoogle Scholar
  12. 12.
    Park, Y.S., Bang, S.-H., Choi, H.-J.: C 3v-Symmetric tripodal nitrophenylurea based anion receptors built on structurally preorganized trindane scaffold. Tetrahedron Lett. 54, 6708–6711 (2013)CrossRefGoogle Scholar
  13. 13.
    Choi, H.-J., Park, Y.S., Yun, S.H., Kim, H.-S., Cho, C.S., Ko, K., Ahn, K.H.: Novel C3 V-Symmetric tripodal scaffold, triethyl cis, cis, cis-2,5,8-tribenzyltrindane-2,5,8-tricarboxylate, for the construction of artificial receptors. Org. Lett. 4, 795–798 (2002)CrossRefGoogle Scholar
  14. 14.
    Sahoo, S.K., Kim, G.-D., Choi, H.-J.: Optical sensing of anions using C 3v-symmetric tripodal receptors. J. Photochem. Photobiol., C 27, 30–53 (2016)CrossRefGoogle Scholar
  15. 15.
    Kim, W., Sahoo, S.K., Kim, G.-D., Choi, H.-J.: Novel C 3v-symmetric trindane based tripodal anion receptor with tris (coumarin-urea) extension for optical sensing of bioactive anions. Tetrahedron 71, 8111–8116 (2015)CrossRefGoogle Scholar
  16. 16.
    Choi, H.-J., Song, J., An, C.Y., Nguyen, Q.-T., Kim, H.-S.: Diastereofacial-selective synthesis of the trindane-based molecular scaffold cis, cis, cis-2,5,8-tribenzyltrindane-2,5,8-tricarboxylate and an arylamine analogue for the construction of C3v-symmetric architectures. Synthesis 2007, 3290–3294 (2007)CrossRefGoogle Scholar
  17. 17.
    Kim, G.-D., Bothra, S., Sahoo, S.K., Choi, H.-J.: A novel C 3v-symmetric molecular clip with tris (diamide) recognition sites on trindane platform for H2PO4 recognition. Tetrahedron Lett. 59, 1679–1682 (2018)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Hynes, M.J.: EQNMR: a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data. J. Chem. Soc., Dalton Trans. (1993). Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistryKyungpook National UniversityDaeguKorea
  2. 2.Department of Applied ChemistrySV National Institute of TechnologySuratIndia

Personalised recommendations