Advertisement

Interaction of pesticide pyroquilon with two different cucurbit[n]uril

  • Ying Fan
  • Ruihan Gao
  • Yangming Jiang
  • Bing Bian
  • Zhu TaoEmail author
  • Gang WeiEmail author
  • Xin XiaoEmail author
Original Article
  • 28 Downloads

Abstract

In this work, we report a conceptual strategy for preventing pesticide degradation using cucurbit[n]uril to encapsulate pyroquilon (Pyn). The host–guest inclusion complexes of pyroquilon (Pyn) with CB[7] and CB[8] were prepared and characterized using 1H NMR spectroscopy, quadrupole-time of flight mass spectrometry (Q-TOF), isothermal titration calorimetry (ITC) and UV absorbance spectrophotometry. The experimental results revealed that the entire Pyn molecule resides within the cavities of CB[7] and CB[8], forming 1:1 inclusion complexes between CB[n] and Pyn. Our study on the release of Pyn demonstrated that CB[n]@Pyn exhibit sustained- and slow-release properties. Moreover, CB[8] can effectively shield UV irradiation and thereby protect the Pyn from photodegradation. Therefore, CB[7]@Pyn and CB[8]@Pyn have great potential to be used as slow-release agents.

Keywords

Pyroquilon Cucurbit[7]uril Cucurbit[8]uril Inclusion complexes Release Antiphotolysis 

Notes

Acknowledgements

We acknowledge the support of the “Chun Hui” Project of the Chinese Ministry of Education (No. Z2017001), the Creative Research Groups of Guizhou Provincial Education Department (2017-028), the Science and Technology Program of Guizhou Province (No. 20185781), and the Innovation Program for High-level Talents of Guizhou Province (No. 2016-5657).

Supplementary material

10847_2019_936_MOESM1_ESM.doc (4.8 mb)
Supplementary material 1 (DOC 4935 kb)

References

  1. 1.
    Liu, B.X., Wang, Y., Yang, F., Wang, X., Shen, H., Cui, H.X., Wu, D.C.: Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules. Colloids Surf. B 144, 38–45 (2016)CrossRefGoogle Scholar
  2. 2.
    Jia, X., Sheng, W.B., Li, W., Tong, Y.B., Liu, Z.Y., Zhou, F.: Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Appl. Mater. Interfaces. 6, 19552–19558 (2014)CrossRefGoogle Scholar
  3. 3.
    Guan, H.N., Chi, D.F., Yu, J., Zhang, S.Y.: Novel photodegradable insecticide W/TiO2/avermectin nanocomposites obtained by polyelectrolytes assembly. Colloids Surf. B 83, 148–154 (2011)CrossRefGoogle Scholar
  4. 4.
    Li, Z.Z., Xu, S.A., Wen, L.X., Liu, F., Liu, A.Q., Wang, Q., Sun, H.Y., Yu, W., Chen, J.F.: Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release. J. Control. Release 111, 81–88 (2006)CrossRefGoogle Scholar
  5. 5.
    Xu, Y., Wang, L.L., Tong, Y.J., Xiang, S., Guo, X.Y., Li, J., Gao, H.X., Wu, X.M.: Study on the preparation, characterization, and release behavior of carbosulfan/polyurethane microcapsules. J. Appl. Polym. Sci. 133, 43844 (2016)Google Scholar
  6. 6.
    Kang, S., Baginska, M., White, S.R., Sottos, N.R.: Core–shell polymeric microcapsules with superior thermal and solvent stability. ACS Appl. Mater. Interfaces. 7, 10952–10956 (2015)CrossRefGoogle Scholar
  7. 7.
    Alonso, M.L., Laza, J.M., Alonso, R.M., Jimenez, R.M., Vilas, J.L., Fananas, R.: Pesticides microencapsulation: a safe and sustainable industrial process. J. Chem. Technol. Biotechnol. 89(7), 1077–1085 (2013)CrossRefGoogle Scholar
  8. 8.
    Zhao, W.X., Wang, C.Z., Chen, L.X., Cong, H., Xin, X., Zhang, Y.Q., Xue, S.F., Huang, Y., Tao, Z., Zhu, Q.J.: A hemimethyl-substituted cucurbit[7]uril derived from 3α-methyl-glycoluril. Org. Lett. 17, 5072–5075 (2015)CrossRefGoogle Scholar
  9. 9.
    Gong, L., Li, T.T., Chen, F., Duan, X.W., Yuan, Y.F., Zhang, D.D., Jiang, Y.M.: An inclusion complex of eugenol into b-cyclodextrin: preparation, and physicochemical and antifungal characterization. Food Chem. 196, 324–330 (2016)CrossRefGoogle Scholar
  10. 10.
    Fan, Y., Gao, R.H., Xin, X., Tao, Z.: Inclusion complexes of hymexazol with three different cucurbit[n]uril: preparation, and physicochemical and antifungal characterization. Isr. J. Chem. 58, 466–471 (2018)CrossRefGoogle Scholar
  11. 11.
    Guo, Y.J., Guo, S.J., Li, J., Wang, E.K., Dong, S.J.: Cyclodextrin–graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta 84, 60–64 (2011)CrossRefGoogle Scholar
  12. 12.
    Zhang, C.X., Jing, X., Du, L.M., Liu, H.L., Li, J., Zhao, S.G., Fu, Y.L.: Cucurbit[7]uril host–guest complexation of nereistoxin investigated by competitive binding of palmatine fluorescent probe. Prog. React. Kinet. Mech. 40, 154–162 (2015)CrossRefGoogle Scholar
  13. 13.
    Lin, L., Zhu, Y.L., Thangaraj, B., Abdel-Samie, M.A.S., Cui, H.Y.: Improving the stability of thyme essential oil solid liposome by using β-cyclodextrin as a cryoprotectant. Carbohydr. Polym. 188, 243–251 (2018)CrossRefGoogle Scholar
  14. 14.
    Liu, Q., Yang, Y., Li, H., Zhu, R., Shao, Q., Yang, S., Xu, J.: NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 64, 147–153 (2015)CrossRefGoogle Scholar
  15. 15.
    Ding, Y., Yang, B., Liu, H., Liu, Z., Zhang, X., Zheng, X., Liu, Q.: FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensors Actuators B 259, 775–783 (2018)CrossRefGoogle Scholar
  16. 16.
    Liu, Q., Yang, Y., Lv, X., Ding, Y., Zhang, Y., Jing, J., Xu, C.: One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors Actuators B 240, 726–734 (2017)CrossRefGoogle Scholar
  17. 17.
    Yusoff, S.N.M., Kamari, A., Aljafree, N.F.A.: A review of materials used as carrier agents in pesticide formulations. Int. J. Environ. Sci. Technol. 13, 2977–2994 (2016)CrossRefGoogle Scholar
  18. 18.
    Rutenberg, R., Bernstein, S., Fallik, E., Paster, N., Poverenov, E.: The improvement of propionic acid safety and use during the preservation of stored grains. Crop Prot. 110, 191–197 (2018)CrossRefGoogle Scholar
  19. 19.
    Kaziem, A.E., Gao, Y.H., He, S., Li, J.H.: Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release. J. Agric. Food Chem. 65, 7854–7864 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, D.L., Jia, M.C., Wang, L.Y., Song, S., Feng, J.T., Zhang, X.: Chitosan and β-cyclodextrin-epichlorohydrin polymer composite film as a plant healthcare material for carbendazim-controlled release to protect rape against Sclerotinia sclerotiorum (Lib.) de Bary. Materials 10, 343–362 (2017)CrossRefGoogle Scholar
  21. 21.
    Kaziem, A.E., Gao, Y.H., Zhang, Y., Qin, X.Y., Xiao, Y.N., Zhang, Y.H., You, H., Li, J.H., He, S.: α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella. J. Hazard. Mater. 359, 213–221 (2018)CrossRefGoogle Scholar
  22. 22.
    Marcos, X., Perez-Casas, S., Llovo, J., Concheiro, A., Alvarez-Lorenzo, C.: Poloxamer-hydroxyethyl cellulose-a-cyclodextrin supramolecular gels for sustained release of griseofulvin. Int. J. Pharm. 500, 11–19 (2016)CrossRefGoogle Scholar
  23. 23.
    Cong, H., Ni, X.L., Xiao, X., Huang, Y., Zhu, Q.J., Xue, S.F., Tao, Z., Lindoy, L.F., Wei, G.: Synthesis and separation of cucurbit[n]urils and their derivatives. Org. Biomol. Chem. 14, 4335–4364 (2016)CrossRefGoogle Scholar
  24. 24.
    Day, A.I., Arnold, A.P., Blanch, R.J.: Method for synthesis of cucurbiturils, PCT Int. Appl., WO 2000068232A1 20001116 (2000)Google Scholar
  25. 25.
    Kim, J., Jung, I.S., Kim, S.Y., Lee, E., Kang, J.K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)CrossRefGoogle Scholar
  26. 26.
    Kim, K.: Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002)CrossRefGoogle Scholar
  27. 27.
    Dsouza, R.N., Pischel, U., Nau, W.M.: Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011)CrossRefGoogle Scholar
  28. 28.
    Gao, R.H., Chen, L.X., Chen, K., Tao, Z., Xiao, X.: Development of hydroxylated cucurbit[n]urils, their derivatives and potential applications. Coord. Chem. Rev. 348, 1–24 (2017)CrossRefGoogle Scholar
  29. 29.
    Liu, J., Lan, Y., Yu, Z.Y., Tan, C.S.Y., Parker, R.M., Abell, C., Scherman, O.A.: Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: a versatile approach for supramolecular architectures and materials. Acc. Chem. Res. 50, 208–217 (2017)CrossRefGoogle Scholar
  30. 30.
    Yang, L.G., Kan, J.L., Wang, X., Zhang, Y.H., Tao, Z., Liu, Q.Y., Wang, F., Xiao, X.: Study on the binding interaction of the α,α′,δ,δ′-tetramethylcucurbit[6]uril with biogenic amines in solution and the solid state. Front. Chem. 6, Article 289 (2018)Google Scholar
  31. 31.
    Murray, J., Kim, K., Ogoshi, T., Yao, W., Gibb, B.C.: The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017)CrossRefGoogle Scholar
  32. 32.
    Wang, X.X., Chen, K., Shen, F.F., Hua, Z.Y., Qiu, S.C., Zhang, Y.Q., Cong, H., Liu, Q.Y., Tao, Z., Xiao, X.: A new member of the inverted cucurbit[n]uril family. Chemistry 23(67), 16953–16956 (2017)CrossRefGoogle Scholar
  33. 33.
    Gao, Z.Z., Kan, J.L., Tao, Z., Bian, B., Xiao, X.: Stimuli-responsive supramolecular assembly between inverted cucurbit[7]uril and hemicyanine dye. N. J. Chem. 42, 15420–15426 (2018)CrossRefGoogle Scholar
  34. 34.
    Shan, P.H., Tu, S.C., Lin, R.L., Tao, Z., Liu, J.X., Xiao, X.: Supramolecular complexes of α, α’, δ, δ’-tetramethyl-cucurbit[6]uril binding with enantiomeric amino acids. CrystEngComm 19, 2168–2171 (2017)CrossRefGoogle Scholar
  35. 35.
    Xiao, X., Gao, Z.Z., Shan, C.L., Tao, Z., Zhu, Q.J., Xue, S.F., Liu, J.X.: Encapsulation of haloalkane 1-(3-chlorophenyl)-4-(3-chloropropyl)-piperazinium in symmetrical α, α′, δ, δ′-tetramethyl-cucurbit[6]uril. Phys. Chem. Chem. Phys. 17, 8618–8621 (2015)CrossRefGoogle Scholar
  36. 36.
    Barrow, S.J., Kasera, S., Rowland, M.J., Barrio, J.D., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015)CrossRefGoogle Scholar
  37. 37.
    Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015)CrossRefGoogle Scholar
  38. 38.
    Isaacs, L.: Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc. Chem. Res. 47, 2052–2062 (2014)CrossRefGoogle Scholar
  39. 39.
    Kaifer, A.E.: Toward reversible control of cucurbit[n]uril complexes. Acc. Chem. Res. 47, 2160–2167 (2014)CrossRefGoogle Scholar
  40. 40.
    Yi, S., Kaifer, A.E.: Determination of the purity of cucurbit[n]uril (n = 7, 8) host samples. J. Org. Chem. 76, 10275–10278 (2011)CrossRefGoogle Scholar
  41. 41.
    Koner, A.L., Ghosh, I., Saleh, N., Nau, W.M.: Supramolecular encapsulation of benzimidazole-derived drugs by cucuibi[7]uril. Can. J. Chem. 89, 139–147 (2011)CrossRefGoogle Scholar
  42. 42.
    Ghosh, I., Nau, W.M.: The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Adv. Drug Deliv. Rev. 64, 764–783 (2012)CrossRefGoogle Scholar
  43. 43.
    Liu, Q., Tang, Q., Xi, Y.Y., Huang, Y., Xiao, X., Tao, Z., Xue, S.F., Zhu, Q.J., Zhang, J.X., Wei, G.: Host–guest interactions of thiabendazole with normal and modified cucurbituril: 1H NMR, phase solubility and antifungal activity studies. Supramol. Chem. 27, 386–392 (2015)CrossRefGoogle Scholar
  44. 44.
    Bassam, S.E., Benhamou, N., Carisse, O.: The role of melanin in the antagonistic interaction between the apple scab pathogen Venturia inaequalis and Microsphaeropsis ochracea. Can. J. Microbiol. 48, 349–358 (2002)CrossRefGoogle Scholar
  45. 45.
    Day, A.I., Arnold, A.P.: WO Patent 0068232, 8 (2000)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangPeople’s Republic of China
  2. 2.Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou UniversityGuiyangPeople’s Republic of China
  3. 3.State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangPeople’s Republic of China
  4. 4.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China
  5. 5.Commonwealth Scientific and Industrial Research Organization (CSIRO), ManufacturingLindfieldAustralia

Personalised recommendations