Advertisement

Applications of macrocyclic compounds for electrochemical sensors to improve selectivity and sensitivity

  • Huan Luo
  • Li-Xia Chen
  • Qing-Mei Ge
  • Mao LiuEmail author
  • Zhu Tao
  • Yu-Hui Zhou
  • Hang CongEmail author
Review Article
  • 45 Downloads

Abstract

Electrochemical sensing is a promising analytic method with its advantages, such as low cost, fast response, simple operation, high accuracy, low detection limit and so on. With the rapid development of electroanalysis, various modified electrodes were synthesized for constructing different kinds of electrochemical sensors on purpose. Macrocyclic compounds with their superior supramolecular recognition properties have aroused the research interest, as they can be used as modifiers for enhancing the sensitivity and selectivity of electrodes. All five classic macrocyclic compounds, which are crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes, have been employed as receptors for electrochemical sensors, and these macrocycles have led to a wilder detection range, a lower detection limit, and superior ability of anti-interferences against coexisting ions or molecules. The macrocycles modified electrodes have shown greater sensitivity and selectivity in detection. Therefore, this review focuses on the results of the studies published in recent 8 years on macrocycles improved electrochemical sensing.

Graphic abstract

In this review, the recent development of functionalization of macrocyclic compounds including crown ethers, cyclodextrins, calixarenes, cucurbiturils, pillararenes, on electrochemical sensors has been summarized.

Keywords

Crown ethers Cyclodextrins Calixarenes Cucurbiturils Pillararenes Modification Electrochemical sensors 

Notes

Acknowledgments

We acknowledge the financial support of National Natural Science Foundation of China (No. 21662007), Natural Science Foundation of Guizhou Province [Nos. (2016)1031, 2016(7443), (2017)1027], the Project for Outstanding Young Scientists and Technicians of Guizhou Province [No. (2017)5606], and the Project of Science and Technology of Guizhou Province [No. (2017)5788].

References

  1. 1.
    Donini, C.A., Silva, M.K.L., Simões, R.P., Cesarino, I.: Reduced graphene oxide modified with silver nanoparticles for the electrochemical detection of estriol. J. Electroanal. Chem. 809, 67–73 (2018)CrossRefGoogle Scholar
  2. 2.
    Maduraiveeran, G., Sasidharan, M., Ganesan, V.: Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 103, 113–129 (2018)CrossRefPubMedGoogle Scholar
  3. 3.
    Durst, R.A., Blubaugh, E.A.: Chemically modified electrode sensors. ACS Sym. Ser. 309, 245–255 (1986)CrossRefGoogle Scholar
  4. 4.
    Amreen, K., Kumar, A.S.: A human whole blood chemically modified electrode for the hydrogen peroxide reduction and sensing: real-time interaction studies of hemoglobin in the red blood cell with hydrogen peroxide. J. Electroanal. Chem. 815, 189–197 (2018)CrossRefGoogle Scholar
  5. 5.
    Mazloumardakani, M., Rajabzadeh, N., Firouzabadi, A.D., Benvidi, A., Abdollahialibeik, M.: A chemically modified electrode with hydroquinone derivative based on carbon nanoparticles for simultaneous determination of isoproterenol, uric acid, folic acid and tryptophan. Anal. Methods 6(12), 4462–4468 (2014)CrossRefGoogle Scholar
  6. 6.
    Moses, P.R., Wier, L., Murray, R.W.: Chemically modified tin oxide electrode. Anal. Chem. 47(12), 1882–1886 (1975)CrossRefGoogle Scholar
  7. 7.
    Hirata, H., Higashiyama, K.: Ion-selective chalcogenide electrodes for a number of cations. Talanta 19(4), 391–398 (1972)CrossRefPubMedGoogle Scholar
  8. 8.
    Gao, Y., Xiang, Q., Liu, J., Wang, Q., Tang, J., Yang, S.W., Wu, J.: Research advance of electrochemical sensor fabricated with nanomaterials and their application. Adv. Mater. Res. 418–420, 2126–2129 (2011)CrossRefGoogle Scholar
  9. 9.
    Zou, H., Liu, J., Li, Y., Li, X., Wang, X.: Cucurbit[8]uril-based polymers and polymer materials. Small 14(46), 1802234/1–1802234/19 (2018)CrossRefGoogle Scholar
  10. 10.
    Moreira, L., Illescas, B.M., Martín, N.: Supramolecular complexation of carbon nanostructures by crown ethers. J. Org. Chem. 82(7), 3347–3358 (2017)CrossRefPubMedGoogle Scholar
  11. 11.
    Xu, J., Wang, Y., Hu, S.: Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 184(1), 1–44 (2017)CrossRefGoogle Scholar
  12. 12.
    Hu, W.-B., Hu, W.-J., Liu, Y.A., Li, J.-S., Jiang, B., Wen, K.: Multicavity macrocyclic hosts. Chem. Commun. 52(82), 12130–12142 (2016)CrossRefGoogle Scholar
  13. 13.
    Lou, X.-Y., Song, N., Yang, Y.-W.: Fluorescence resonance energy transfer systems in supramolecular macrocyclic chemistry. Molecules 22(10), 1640/1–12640/16 (2017)CrossRefGoogle Scholar
  14. 14.
    Chen, J.-F., Lin, Q., Zhang, Y.-M., Yao, H., Wei, T.-B.: Pillararene-based fluorescent chemosensors: recent advances and perspectives. Chem. Commun. 53(100), 13296–13311 (2017)CrossRefGoogle Scholar
  15. 15.
    Vidal, D., Olivo, G., Costas, M.: Controlling selectivity in aliphatic C-H oxidation through supramolecular recognition. Chem. Eur. J. 24(20), 5042–5054 (2018)CrossRefPubMedGoogle Scholar
  16. 16.
    Le, H.T.N., Jeong, H.K.: Electrochemical supramolecular recognition of hemin–carbon composites. Chem. Phys. Lett. 698, 102–109 (2018)CrossRefGoogle Scholar
  17. 17.
    Li, X., Wang, L., Deng, Y., Luo, Z., Zhang, Q., Dong, S., Han, C.: Preparation of cross-linked supramolecular polymers based on benzo-21-crown-7/secondary ammonium salt host–guest interactions. Chem. Commun. 54(88), 12459–12462 (2018)CrossRefGoogle Scholar
  18. 18.
    Wang, Y., Ping, G., Li, C.: Efficient complexation between pillar[5]arenes and neutral guests: from host–guest chemistry to functional materials. Chem. Commun. 52(64), 9858–9872 (2016)CrossRefGoogle Scholar
  19. 19.
    Mou, Q., Ma, Y., Jin, X., Yan, D., Zhu, X.: Host–guest binding motifs based on hyperbranched polymers. Chem. Commun. 52(79), 11728–11743 (2016)CrossRefGoogle Scholar
  20. 20.
    Dong, S., Zheng, B., Wang, F., Huang, F.: Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Acc. Chem. Res. 47(7), 1982–1994 (2014)CrossRefPubMedGoogle Scholar
  21. 21.
    Guo, D.-S., Liu, Y.: Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc. Chem. Res. 47(7), 1925–1934 (2014)CrossRefPubMedGoogle Scholar
  22. 22.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Analytical applications of calixarenes from 2005 up-to-date. J. Incl. Phenom. Macrocycl. Chem. 69(1–2), 1–55 (2011)CrossRefGoogle Scholar
  23. 23.
    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89(26), 7017–7036 (1967)CrossRefGoogle Scholar
  24. 24.
    Pokhodenko, V.D., Krylov, V.A., Kurys, J.I., Golovaty, V.G., Shabelnikov, V.P.: Effect of crown ethers on synthesis of polyaniline and its electrochemical behaviour in organic solvents. Synth. Met. 60(1), 81–83 (1993)CrossRefGoogle Scholar
  25. 25.
    Price, T.L., Wessels, H.R., Slebodnick, C., Gibson, H.W.: High-yielding syntheses of crown ether-based pyridyl cryptands. J. Org. Chem. 82(15), 8117–8122 (2017)CrossRefPubMedGoogle Scholar
  26. 26.
    Komiyama, M.: Cyclic oligomers as highly selective catalysts. Prog. Polym. Sci. 18(5), 871–898 (1993)CrossRefGoogle Scholar
  27. 27.
    Chang, T., Li, B., Chen, L., Ge, L., Lu, M.: A mild method to synthesize TATB by amination of 1,3,5-trialkoxy-2,4,6-trinitrobenzene under phase transfer catalysis conditions. Cent. Eur. J. Energy Mater. 14(1), 47–59 (2017)CrossRefGoogle Scholar
  28. 28.
    Nemcsok, T., Rapi, Z., Keglevich, G., Gruen, A., Bako, P.: Synthesis of d-mannitol-based crown ethers and their application as catalyst in asymmetric phase transfer reactions. Chirality 30(4), 407–419 (2018)CrossRefPubMedGoogle Scholar
  29. 29.
    Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J.L., Schulz, P.: Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Micropor. Mater. 4(2–3), 231–238 (1995)CrossRefGoogle Scholar
  30. 30.
    Franchi, P., Poderi, C., Mezzina, E., Biagini, C., Di, S.S., Lucarini, M.: 2-Cyano-2-phenylpropanoic acid triggers the back and forth motions of an acid–base-operated paramagnetic molecular switch. J. Org. Chem. (2019).  https://doi.org/10.1021/acs.joc.9b01164 CrossRefPubMedGoogle Scholar
  31. 31.
    Yang, X., Chen, M., Wang, F., Jin, X.-Y., Cong, H., Tao, Z.: Development of a sub-group of the cucurbituril family, hemicucurbiturils: synthesis and supramolecular chemistry. Mini-Rev. Org. Chem. 15(4), 274–282 (2018)CrossRefGoogle Scholar
  32. 32.
    Pedersen, C.J.: Macrocyclic polyethers: dibenzo-18-crown-6 polyether and dicyclohexyl-18-crown-6 polyether. Org. Synth. 52, 66–74 (1972)CrossRefGoogle Scholar
  33. 33.
    Durst, R.A., Baumner, A.J., Murray, R.W., Buck, R.P., Andrieux, C.P.: Chemically modified electrodes: recommended terminology and definitions. Pure App. Chem. 69(6), 1317–1323 (1997)CrossRefGoogle Scholar
  34. 34.
    Cheraghi, S., Taher, M.A., Fazelirad, H.: Voltammetric sensing of thallium at a carbon paste electrode modified with a crown ether. Microchim. Acta 180(11–12), 1157–1163 (2013)CrossRefGoogle Scholar
  35. 35.
    Desai, P.B., Kotkar, R.M., Srivastava, A.K.: Electrochemical behaviour of pyridoxine hydrochloride (vitamin B6) at carbon paste electrode modified with crown ethers. J. Solid State Electrochem. 12(9), 1067–1075 (2008)CrossRefGoogle Scholar
  36. 36.
    Rounaghi, G., Kakhki, R.M., Azizi-toupkanloo, H.: Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles. Mat. Sci. Eng. C 32(2), 172–177 (2012)CrossRefGoogle Scholar
  37. 37.
    Hassan, R.Y.A., Kamel, M.S., Hassan, H.N.A., Khaled, E.: Voltammetric determination of mercury in biological samples using crown ether/multiwalled carbon nanotube-based sensor. J. Electroanal. Chem. 759(Part-1), 101–106 (2015)CrossRefGoogle Scholar
  38. 38.
    Ghanei-Motlagh, M., Karami, C., Taher, M.A., Hosseini-Nasab, S.J.: Stripping voltammetric detection of copper ions using carbon paste electrode modified with azacrown ether capped gold nanoparticles and reduced graphene oxide. RSC Adv. 6(92), 89167–89175 (2016)CrossRefGoogle Scholar
  39. 39.
    Atta, N.F., Ahmed, Y.M., Galal, A.: Electrochemical determination of neurotransmitters at crown ether modified carbon nanotube composite: application for sub-nano-sensing of serotonin in human serum. Electroanalysis (2018).  https://doi.org/10.1002/elan.201800065 CrossRefGoogle Scholar
  40. 40.
    Dagdevren, M., Yilmaz, I., Yucel, B., Emirik, M.: A novel ferrocenyl naphthoquinone fused crown ether as a multisensor for water determination in acetonitrile and selective cation binding. J. Phys. Chem. B 119(38), 12464–12479 (2015)CrossRefPubMedGoogle Scholar
  41. 41.
    Flores, E., Pizarro, J., Godoy, F., Segura, R., Gómez, A., Agurto, N., Sepúlveda, P.: An electrochemical sensor for determination of Cu(II) using amodified electrode with ferrocenyl crown ether compound by squarewave anodic stripping voltammetry. Sens. Actuators B 251, 433–439 (2017)CrossRefGoogle Scholar
  42. 42.
    Otón, F., Tárraga, A., Velasco, M.D., Molina, P.: A ferrocene-based heteroditopic ligand for electrochemical sensing of cations and anions. Dalton Trans. 7, 1159–1161 (2005)CrossRefGoogle Scholar
  43. 43.
    Miyaji, H., Komada, H., Goto, K., Fujimoto, J., Kiriyama, N., Tucker, J.H.R.: Selective recognition and electrochemical sensing of dopamine using a ferrocene-based heteroditopic receptor. Tetrahedron Lett. 59(43), 3853–3857 (2018)CrossRefGoogle Scholar
  44. 44.
    Singh, U., Kumbhat, S.: Functionalized surface for electrochemical sensing of electrochemically inactive alkali metal ion. Indian J. Chem. 56A(9), 934–938 (2017)Google Scholar
  45. 45.
    Kumbhat, S., Singh, U.: A potassium-selective electrochemical sensor based on crown-ether functionalized self assembled monolayer. J. Electroanal. Chem. 809, 31–35 (2018)CrossRefGoogle Scholar
  46. 46.
    Dehdashtian, S., Shamsipur, M.: Modification of gold surface by electrosynthesized mono aza crown ether substituted catechol-terminated alkane dithiol and its application as a new electrochemical sensor for trace detection of cadmium ions. Colloids Surf. B 171, 494–500 (2018)CrossRefGoogle Scholar
  47. 47.
    Karimian, F., Rounaghi, G.H., Arbab-Zavar, M.H.: Construction of a PVC based 15-crown-5 electrochemical sensor for Ag(I) cation. Chin. Chem. Lett. 25(5), 809–814 (2014)CrossRefGoogle Scholar
  48. 48.
    Karimian, S., Zamani, H.A., Vahdani, M.: Construction of a new lutetium(III) PVC-membrane electrochemical sensor based on 4′-carboxybenzo-18-crown-6. Int. J. Electrochem. Sci. 8(2), 2710–2721 (2013)Google Scholar
  49. 49.
    Kadam, Z.M., Gwenin, C.D.: Polymer membranes based on ionophore-impregnated for nutrients detection by electrochemical methods. Der. Pharma. Chemica. 9(20), 29–33 (2017)Google Scholar
  50. 50.
    Arturo, H.-J., Gabriela, R.-M., Horacio, R.-P., Patricia, B.-H., Carlos, E.B.-D., Margarita, B.-P.: Voltammetric determination of metronidazole using a sensor based on electropolymerization of α-cyclodextrin over a carbon paste electrode. Electroanalysis 28(4), 704–710 (2016)CrossRefGoogle Scholar
  51. 51.
    Xia, J., Wang, Z., Guo, X., Xia, Y., Zhang, F., Tang, J., Li, Y., Han, G., Xia, L.: Recognition and electrochemical determination of environmental contaminants nitrophenol by cyclodextrin homologous functionalized graphene modified electrodes. Int. J. Electrochem. Sci. 8(6), 8774–8785 (2013)Google Scholar
  52. 52.
    Hasanzadeh, M., Javidi, E., Jouyban, A., Mokhtarzadeh, A., Shadjou, N., Mahboob, S.: Electrochemical recognition of taurine biomarker in unprocessed human plasma samples using silver nanoparticlebased nanocomposite: A new platform for early stage diagnosis of neurodegenerative diseases of the nervous system. J. Mol. Recognit. 31(12), e2739 (2018)CrossRefPubMedGoogle Scholar
  53. 53.
    Shadjou, R., Hasanzadeh, M., Heidar-poor, M., Shadjou, N.: Electrochemical monitoring of aflatoxin M1 in milk samples using silver nanoparticles dispersed on α-cyclodextrin-GQDs nanocomposite. J. Mol. Recognit. 31(6), e2699 (2018)CrossRefGoogle Scholar
  54. 54.
    Tredici, I., Merli, D., Zavarise, F., Profumo, A.: α-Cyclodextrin chemically modified gold electrode for determination of nitroaromatic compounds. J. Electroanal. Chem. 645(1), 22–27 (2010)CrossRefGoogle Scholar
  55. 55.
    Pekec, B., Oberreiter, A., Hauser, S., Kalcher, K., Ortner, A.: Electrochemical sensor based on a cyclodextrin modified carbon paste electrode for trans-resveratrol analysis. Int. J. Electrochem. Sci. 7(5), 4089–4098 (2012)Google Scholar
  56. 56.
    Jiang, Z., Li, G., Zhang, M.: Electrochemical sensor based on electro-polymerization of β-cyclodextrin and reduced-graphene oxide on glassy carbon electrode for determination of gatifloxacin. Sens. Actuators B: Chem. 228, 59-65 (2016)CrossRefGoogle Scholar
  57. 57.
    Wei, M., Tian, D., Liu, S., Zheng, X., Duan, S., Zhou, C.: β-Cyclodextrin functionalized graphene material: a novelelectrochemical sensor for simultaneous determination of 2-chlorophenol and 3-chlorophenol. Sens. Actuators B 195, 452–458 (2014)CrossRefGoogle Scholar
  58. 58.
    Zhu, G., Qian, J., Sun, H., Wu, X., Wang, K., Yi, Y.: Voltammetric determination of o-chlorophenol using β-cyclodextrin/graphene nanoribbon hybrids modified electrode. J. Electroanal. Chem. 794, 126–131 (2017)CrossRefGoogle Scholar
  59. 59.
    Liu, Z., Xue, Q., Guo, Y.: Sensitive electrochemical detection of rutin and isoquercitrin based on SH-β-cyclodextrin functionalized graphene-palladium nanoparticles. Biosens. Bioelectron. 89(Part 1), 444–452 (2017)CrossRefPubMedGoogle Scholar
  60. 60.
    Ran, X., Yang, L., Zhang, J., Deng, G., Li, Y., Xie, X., Zhao, H., Li, C.-P.: Highly sensitive electrochemical sensor based on β-cyclodextrin-gold@3,4,9,10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns for simultaneous determination of myricetin and rutin. Anal. Chim. Acta 892, 85–94 (2015)CrossRefPubMedGoogle Scholar
  61. 61.
    Ran, X., Yang, L., Zhao, G., Ye, H., Zhang, Y., Fan, S., Xie, X., Zhao, H., Li, C.-P.: Simultaneous determination of two flavonoids based on disulfide linked β-cyclodextrin dimer and Pd cluster functionalized graphene-modified electrode. RSC Adv. 5(75), 60775–60785 (2015)CrossRefGoogle Scholar
  62. 62.
    Ganganboina, A.B., Doong, R.: Functionalized N-doped graphene quantum dots for electrochemical determination of cholesterol through host–guest inclusion. Microchim. Acta 185(11), 1–11 (2018)CrossRefGoogle Scholar
  63. 63.
    Yang, L., Zhao, H., Li, C.-P., Fan, S., Li, B.: Dual β-cyclodextrin functionalized Au@SiC nanohybrids for the electrochemical determination of tadalafil in the presence of acetonitrile. Biosens. Bioelectron. 64, 126–130 (2015)CrossRefPubMedGoogle Scholar
  64. 64.
    Yang, L., Zhao, H., Li, Y., Li, C.-P.: Electrochemical simultaneous determination of hydroquinone and p-nitrophenol based on host–guest molecular recognition capability of dual β-cyclodextrin functionalized Au@graphene nanohybrids. Sens. Actuators B 207(Part A), 1–8 (2015)Google Scholar
  65. 65.
    Wu, S., Fan, S., Tan, S., Wang, J., Li, C.-P.: A new strategy for the sensitive electrochemical determination of nitrophenol isomers using β-cyclodextrin derivative-functionalized silicon carbide. RSC Adv. 8(2), 775–784 (2018)CrossRefGoogle Scholar
  66. 66.
    Upadhyay, S.S., Kalambate, P.K., Srivastava, A.K.: Enantioselective analysis of moxifloxacin hydrochloride enantiomers with graphene-β-cyclodextrin-nanocomposite modified carbon paste electrode using adsorptive stripping differential pulse voltammetry. Electrochim. Acta 248, 258–269 (2017)CrossRefGoogle Scholar
  67. 67.
    Liang, W., Rong, Y., Fan, L., Dong, W., Dong, Q., Yang, C., Zhong, Z., Dong, C., Shuang, S., Wong, W.-Y.: 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers. J. Mater. Chem. C 6(47), 12822–12829 (2018)CrossRefGoogle Scholar
  68. 68.
    Gaichore, R.R., Srivastava, A.K.: Electrocatalytic determination of propranolol hydrochloride at carbon paste electrode based on multiwalled carbon-nanotubes and γ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 78(1–4), 195–206 (2014)CrossRefGoogle Scholar
  69. 69.
    Ates, S., Zor, E., Akin, I., Bingol, H., Alpaydin, S., Akgemci, E.G.: Discriminative sensing of DOPA enantiomers by cyclodextrin anchored graphene nanohybrids. Anal. Chim. Acta 970, 30–37 (2017)CrossRefPubMedGoogle Scholar
  70. 70.
    Mokhtari, B., Pourabdillah, K.: Application of calixarenes in development of sensors. Asian J. Chem. 25(1), 1–12 (2013)CrossRefGoogle Scholar
  71. 71.
    Shetty, D., Jahovic, I., Raya, J., Asfari, Z., Olsen, J.-C., Trabolsi, A.: Porous polycalix[4]arenes for fast and efficient removal of organic micropollutants from water. ACS Appl. Mater. Interfaces. 10(3), 2976–2981 (2018)CrossRefPubMedGoogle Scholar
  72. 72.
    Memon, S., Laghari, A.H., Kandhro, A.A., Memon, F.N., Nelofar, A.: Purification of flavonoid metal complexes from Alhagi camelorum with calix[4]arene based impregnated resin. Anal. Methods 6(16), 6332–6336 (2014)CrossRefGoogle Scholar
  73. 73.
    Desuzinges, M.E., Traversier, A., Champagne, A., Benier, L., Audebert, S., Balme, S., Dejean, E., Rosa, C.M., Jawhari, A.: Expression and purification of native and functional influenza A virus matrix 2 proton selective ion channel. Protein Expr. Purif. 131, 42–50 (2017)CrossRefGoogle Scholar
  74. 74.
    Park, J.H., Lee, Y.K., Cheong, N.Y., Jang, M.D.: Reversed-phase liquid chromatographic separation of some monosubstituted phenols with calix[6]arene-p-sulfonate-modified eluents. Chromatographia 37(3–4), 221–223 (1993)CrossRefGoogle Scholar
  75. 75.
    Zhang, W., Zhang, Y., Zhang, G., Ba, X., Xia, S., Zhao, W., Yin, D., Zhang, S.: Tetra-proline-modified calix[4]arene-bonded silica stationary phase for simultaneous reversed-phase/hydrophilic interaction mixed-mode chromatography. J. Sep. Sci. 42(7), 1374–1383 (2019)CrossRefPubMedGoogle Scholar
  76. 76.
    Guven, I., Gezici, O., Bayrakci, M., Morbidelli, M.: Calixarene-immobilized monolithic cryogels for preparative proteinchromatography. J. Chromatogr. A 1558, 59–68 (2018)CrossRefPubMedGoogle Scholar
  77. 77.
    De, R.M., La, M.P., Soriente, A., Gaeta, C., Talotta, C., Neri, P.: Exploiting the hydrophobicity of calixarene macrocycles for catalysis under “on-water” conditions. RSC Adv. 6(94), 91846–91851 (2016)CrossRefGoogle Scholar
  78. 78.
    Lakouraj, M.M., Tashakkorian, H., Rouhi, M.: One-pot synthesis of xanthones and dixanthones using calix[4]arene sulfonic acid under solvent-free condition. Chem. Sci. Trans. 2(3), 739–748 (2013)Google Scholar
  79. 79.
    Yang, F., Guo, H., Jiao, Z., Li, C., Ye, J.: Calixarene ionic liquids: excellent phase transfer catalysts for nucleophilic substitution reaction in water. J. Iran Chem. Soc. 9(3), 327–332 (2012)CrossRefGoogle Scholar
  80. 80.
    Zhao, L.-L., Yang, X.-S., Chong, H., Wang, Y., Yan, C.-G.: Multi-point interaction-based recognition of fluoride ions by tert-butyldihomooxacalix[4]arenes bearing phenolic hydroxyls and thiourea. New J. Chem. 43(14), 5503–5511 (2019)CrossRefGoogle Scholar
  81. 81.
    Jaiswal, M.K., Muwal, P.K., Pandey, S., Pandey, P.S.: A novel hybrid macrocyclic receptor based on bile acid and calix[4]arene frameworks for metal ion recognition. Tetrahedron Lett. 58(22), 2153–2156 (2017)CrossRefGoogle Scholar
  82. 82.
    Khanpour, M., Ganjali, S., Zadmard, R.: Amino acid derivative of calix[4]arene as Schiff base for sensing of copper(II). Orient. J. Chem. 33(1), 274–281 (2017)CrossRefGoogle Scholar
  83. 83.
    Zhao, H., Yang, L., Li, Y., Ran, X., Ye, H., Zhao, G., Zhang, Y., Liu, F., Li, C.-P.: A comparison study of macrocyclic hosts functionalized reduced graphene oxide for electrochemical recognition of tadalafil. Biosens. Bioelectron. 89(Part-1), 361–369 (2017)CrossRefPubMedGoogle Scholar
  84. 84.
    Pizarro, J., Flores, E., Jimenez, V., Maldonado, T., Saitz, C., Vega, A., Godoy, F., Segura, R.: Synthesis and characterization of the first cyrhetrenyl-appended calix[4]arene macrocycle and its application as an electrochemical sensor for determination of Cu(II) in bivalve mollusks using square wave anodic stripping voltammetry. Sens. Actuators B 281, 115–122 (2019)CrossRefGoogle Scholar
  85. 85.
    Zhao, K., Yue, S., Tian, D., Zhang, Y.: Electrochemical behavior of propranolol hydrochloride in neutral solution on calixarene/multi-walled carbon nanotubes modified glassy carbon electrode. J. Electroanal. Chem. 709, 99–105 (2013)CrossRefGoogle Scholar
  86. 86.
    Varchenko, V.V., Bryleva, E.Y., Belikov, K.N., Kalchenko, V.I.: Electrochemical behavior of vinpocetine at carbon paste electrodes modified with calixarenes. J. Electrochem. Soc. 161(6), G43–G47 (2014)CrossRefGoogle Scholar
  87. 87.
    Zheng, G., Chen, M., Liu, X., Zhou, J., Xie, J., Diao, G.: Self-assembled thiolated calix[n]arene (n = 4, 6, 8) films on gold electrodes and application for electrochemical determination dopamine. Electrochim. Acta 136, 301–309 (2014)CrossRefGoogle Scholar
  88. 88.
    Chen, Y., Zheng, G., Shi, Q., Zhao, R., Chen, M.: Preparation of thiolated calix[8]arene/AuNPs/MWCNTs modified glassy carbon electrode and its electrocatalytic oxidation toward paracetamol. Sens. Actuators B 277, 289–296 (2018)CrossRefGoogle Scholar
  89. 89.
    Aziz, S.F.N.A., Zawawi, R., Ahmad, S.A.A.: An electrochemical sensing platform for the detection of lead ions based on dicarboxyl-calix[4]arene. Electroanalysis 30(3), 533–542 (2018)CrossRefGoogle Scholar
  90. 90.
    Oshima, T., Higuchi, H., Ohto, K., Inoue, K., Goto, M.: Selective extraction and recovery of cytochrome c by liquid-liquid extraction using a calix[6]arene carboxylic acid derivative. Langmuir 21(16), 7280–7284 (2005)CrossRefPubMedGoogle Scholar
  91. 91.
    Mohsin, M.A., Banica, F.-G., Oshima, T., Hianik, T.: Electrochemical impedance spectroscopy for assessing the recognition of cytochrome c by immobilized calixarenes. Electroanalysis 23(5), 1229–1235 (2011)CrossRefGoogle Scholar
  92. 92.
    Kurzatkowska, K., Sayin, S., Yilmaz, M., Radecka, H., Radecki, J.: Calix[4]arene derivatives as dopamine hosts in electrochemical sensors. Sens. Actuators B 218, 111–121 (2015)CrossRefGoogle Scholar
  93. 93.
    El-Kosasy, A.M., Nebsen, M., El-Rahman, M.K.A., Salem, M.Y., El-Bardicy, M.G.: Comparative study of 2-hydroxy propyl beta cyclodextrin and calixarene as ionophores in potentiometric ion-selective electrodes for neostigmine bromide. Talanta 85(2), 913–918 (2011)CrossRefPubMedGoogle Scholar
  94. 94.
    Mousavi, M.P.S., El-Rahman, M.K.A., Mahmoud, A.M., Abdelsalam, R.M., Bühlmann, P.: In situ sensing of the neurotransmitter acetylcholine in a dynamic range of 1 nM to 1 mM. ACS Sens. 3(12), 2581–2589 (2018)CrossRefPubMedGoogle Scholar
  95. 95.
    Yang, L., Zhao, H., Li, Y., Ran, X., Deng, G., Zhang, Y., Ye, H., Zhao, G., Li, C.-P.: Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode. Analyst 141(1), 270–278 (2016)CrossRefPubMedGoogle Scholar
  96. 96.
    Yang, L., Ran, X., Cai, L., Li, Y., Zhao, H., Li, C.-P.: Calix[8]arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host–guest recognition. Biosens. Bioelectron. 83, 347–352 (2016)CrossRefPubMedGoogle Scholar
  97. 97.
    Zhao, H., Liu, F., Wu, S., Yang, L., Zhang, Y.-P., Li, C.-P.: Ultrasensitive electrochemical detection of Dicer1 3′UTR for the fast analysis of alternative cleavage and polyadenylation. Nanoscale 9(12), 4272–4282 (2017)CrossRefPubMedGoogle Scholar
  98. 98.
    Zhao, H., Liu, F., Lu, Y., Jin, L., Tan, S., Zhang, Y., Li, C.-P.: Ultrasensitive electrochemical detection of alternative cleavage and polyadenylation of CCND2 gene at the single-cell level. Sens. Actuators B 285, 553–561 (2019)CrossRefGoogle Scholar
  99. 99.
    Lai, G.-S., Zhang, H.-L., Jin, C.-M.: Electrocatalysis and voltammetric determination of dopamine at a calix[4]arene crown-4 ether modified glassy carbon electrode. Electroanalysis 19(4), 496–501 (2007)CrossRefGoogle Scholar
  100. 100.
    Zhang, H.-L., Liu, Y., Lai, G.-S., Yu, A.-M., Huang, Y.-M., Jin, C.-M.: Calix[4]arene crown-4 ether modified glassy carbon electrode for electrochemical determination of norepinephrine. Analyst 134(10), 2141–2146 (2009)CrossRefPubMedGoogle Scholar
  101. 101.
    Saiapina, O.Y., Kharchenko, S.G., Vishnevskii, S.G., Pyeshkova, V.M., Kalchenko, V.I., Dzyadevych, S.V.: Development of conductometric sensor based on 25,27-di-(5-thiooctyloxy)calix[4]arene-crown-6 for determination of ammonium. Nanoscale Res. Lett. 11(1), 105–115 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Gokoglan, T.C., Soylemez, S., Kesik, M., Unay, H., Sayin, S., Yildiz, H.B., Cirpan, A., Toppare, L.: A novel architecture based on a conducting polymer and calixarene derivative: its synthesis and biosensor construction. RSC Adv. 5(45), 35940–35947 (2015)CrossRefGoogle Scholar
  103. 103.
    Ahmadi, F., Raoof, J.B., Ojani, R., Baghayeri, M., Lakouraj, M.M., Tashakkorian, H.: Synthesis of Ag nanoparticles for the electrochemical detection of anticancer drug flutamide. Chin. J. Catal. 36, 439–445 (2015)CrossRefGoogle Scholar
  104. 104.
    Freeman, W.A., Mock, W.L., Shih, N.-Y.: Cucurbituril. J. Am. Chem. Soc. 103(24), 7367–7368 (1981)CrossRefGoogle Scholar
  105. 105.
    Yin, H., Wang, R.: Applications of cucurbit[n]urils (n = 7 or 8) in pharmaceutical sciences and complexation of biomolecules. Isr. J. Chem. 58(3–4), 188–198 (2018)CrossRefGoogle Scholar
  106. 106.
    Kuok, K.I., Li, S., Wyman, I.W., Wang, R.: Cucurbit[7]uril: an emerging candidate for pharmaceutical excipients. Ann. NY Acad. Sci. 1398(1), 108–119 (2017)CrossRefPubMedGoogle Scholar
  107. 107.
    Zheng, L., Sonzini, S., Ambarwati, M., Rosta, E., Scherman, O.A., Herrmann, A.: Turning cucurbit[8]uril into a supramolecular nanoreactor for asymmetric catalysis. Angew. Chem. Int. Ed. 54(44), 13007–13011 (2015)CrossRefGoogle Scholar
  108. 108.
    Pazos, E., Novo, P., Peinador, C., Kaifer, A.E., Garcia, M.D.: Cucurbit[8]uril (CB[8])-based supramolecular switches. Angew. Chem. Int. Ed. 58(2), 403–416 (2019)CrossRefGoogle Scholar
  109. 109.
    Wu, W., Song, S., Cui, X., Sun, T., Zhang, J.-X., Ni, X.-L.: pH-switched fluorescent pseudorotaxane assembly of cucurbit[7]uril with bispyridinium ethylene derivatives. Chin. Chem. Lett. 29(1), 95–98 (2018)CrossRefGoogle Scholar
  110. 110.
    Gao, C., Silvi, S., Ma, X., Tian, H., Credi, A., Venturi, M.: Chiral supramolecular switches based on (R)-binaphthalene-bipyridinium guests and cucurbituril hosts. Chem. Eur. J. 18(52), 16911–16921 (2012)CrossRefPubMedGoogle Scholar
  111. 111.
    Cao, H.-L., Cai, F.-Y., Huang, H.-B., Karadeniz, B., Lu, J.: Polyoxometalate-cucurbituril molecular solid as photocatalyst for dye degradation under visible light. Inorg. Chem. Commun. 84, 164–167 (2017)CrossRefGoogle Scholar
  112. 112.
    Buaki-Sogo, M., Pozo, M., Hernández, P., García, H., Quintana, C.: Graphene incombination with cucurbit[n]urils as electrode modifiers for electroanalytical biomolecules sensing. Talanta 101, 135–140 (2012)CrossRefPubMedGoogle Scholar
  113. 113.
    Domínguez, C.S.H., Quintana, M.C., Hernández, P.: Self-assembled monolayers of cucurbit[6]uril on a gold electrode for 4, 4′-oxydianiline determination. Anal. Appl. Electroanal. 25(5), 1217–1222 (2013)CrossRefGoogle Scholar
  114. 114.
    Domínguez, C.S.H., Hernández, P.: Use of cucurbit[6]uril as a modifier in the electrochemical determination of antitumor platinum(II) complex: trans-[PtCl2(dimethylamine)(isopropylamine)]. Application to biological samples. Am. J. Analyt. Chem. 4(6), 314–322 (2013)CrossRefGoogle Scholar
  115. 115.
    Cong, H., Li, Z.-J., Geng, Q.-X., Tao, Z., Wei, G.: Modification of carbon paste electrode with cucurbit[8]uril and its recognition to phenols. J. Incl. Phenom. Macrocycl. Chem. 81(3–4), 493–498 (2015)CrossRefGoogle Scholar
  116. 116.
    Wei, T., Dong, T., Xing, H., Liu, Y., Dai, Z.: Cucurbituril and azide cofunctionalized graphene oxide for ultrasensitive electro-click biosensing. Anal. Chem. 89(22), 12237–12243 (2017)CrossRefPubMedGoogle Scholar
  117. 117.
    Pozo, M., Mejías, J., Hernández, P., Quintana, C.: Cucurbit[8]uril-based electrochemical sensors as detectorsin flow injection analysis. Application to dopamine determinationin serum samples. Sens. Actuators B 193, 62–69 (2014)CrossRefGoogle Scholar
  118. 118.
    Jang, M., Kim, H., Lee, S., Kim, H.W., Khedkar, J.K., Rhee, Y.M., Hwang, I., Kim, K., Oh, J.H.: Highly sensitive and selective biosensors based on organic transistors functionalized with cucurbit[6]uril derivatives. Adv. Funct. Mater. 25(30), 4882–4888 (2015)CrossRefGoogle Scholar
  119. 119.
    Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T., Nakamoto, Y.: para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 130(15), 5022–5023 (2008)CrossRefPubMedGoogle Scholar
  120. 120.
    Yakimova, L.S., Shurpik, D.N., Guralnik, E.G., Evtugyn, V.G., Osin, Y.N., Stoikov, I.I.: Fluorescein-loaded solid lipid nanoparticles based on monoamine pillar[5]arene: synthesis and interaction with DNA. ChemNanoMat 4(9), 919–923 (2018)CrossRefGoogle Scholar
  121. 121.
    Shamshoom, C., Fong, D., Li, K., Kardelis, V., Adronov, A.: Pillar[5]arene-decorated single-walled carbon nanotubes. ACS Omega 3(10), 13935–13943 (2018)CrossRefGoogle Scholar
  122. 122.
    Lin, W., Zhou, X., Cai, J., Chen, K., He, X., Kong, X., Li, H., Wang, C.: Anion-functionalized pillararenes for efficient sulfur dioxide capture: significant effect of the anion and the cavity. Chem. Eur. J. 23(57), 14143–14148 (2017)CrossRefPubMedGoogle Scholar
  123. 123.
    Dai, D., Li, Z., Yang, J., Wang, C., Wu, J.-R., Wang, Y., Zhang, D., Yang, Y.-W.: Supramolecular assembly-induced emission enhancement for efficient mercury(II) detection and removal. J. Am. Chem. Soc. 141(11), 4756–4763 (2019)CrossRefPubMedGoogle Scholar
  124. 124.
    Yao, Q., Lu, B., Ji, C., Cai, Y., Yin, M.: Supramolecular host–guest system as ratiometric Fe3+ ion sensor based on water-soluble pillar[5]arene. ACS Appl. Mater. Interfaces 9(41), 36320–36326 (2017)CrossRefPubMedGoogle Scholar
  125. 125.
    Zhang, Z., Shao, L., Yang, J.: A phosphonated copillar[5]​arene: Synthesis and application in the construction of pH-​responsive supramolecular polymer in water. Tetrahedron Lett. 59(31), 3000-3004(2018)CrossRefGoogle Scholar
  126. 126.
    Zhou, J., Chen, M., Xie, J., Diao, G.: Synergistically enhanced electrochemical response of host–guest recognition based on ternary nanocomposites: reduced graphene oxide-amphiphilic pillar[5]arene-gold nanoparticles. ACS Appl. Mater. Interfaces. 5(21), 11218–11224 (2013)CrossRefPubMedGoogle Scholar
  127. 127.
    Stoikova, E.E., Sorvin, M., Shurpik, D.N., Budnikov, H.C., Stoikov, I.I., Evtugyn, G.A.: Solid-contact potentiometric sensor based on polyaniline and unsubstituted pillar[5]arene. Electroanalysis 27(2), 440–449 (2015)CrossRefGoogle Scholar
  128. 128.
    Shamagsumova, R.V., Shurpik, D.N., Padnya, P.L., Stoikov, I.I., Evtugyn, G.A.: Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta 144, 559–568 (2015)CrossRefPubMedGoogle Scholar
  129. 129.
    Liu, X., Wang, W., Li, X., Li, C., Qin, L., Sun, J., Kang, S.Z.: Preparation of per-hydroxylated pillar[5]arene decorated graphene and its electrochemical behavior. Electrochim. Acta 210, 720–728 (2016)CrossRefGoogle Scholar
  130. 130.
    Stepanova, V.B., Shurpik, D.N., Evtyugin, V.G., Stoikov, I.I., Evtyugin, G.A., Gianik, T.: An electrochemical aptasensor for cytochrome c, based on pillar[5]arene modified with neutral red. J. Analyt. Chem. 72(4), 375–381 (2017)CrossRefGoogle Scholar
  131. 131.
    Ran, X., Qu, Q., Qian, X., Xie, W., Li, S., Li, L., Yang, L.: Water-soluble pillar[6]arene functionalized nitrogen-doped carbonquantum dots with excellent supramolecular recognition capabilityand superior electrochemical sensing performance towards TNT. Sens. Actuators B 257, 362–371 (2018)CrossRefGoogle Scholar
  132. 132.
    Yu, G., Zhou, J., Shen, J., Tang, G., Huang, F.: Cationic pillar[6]arene/ATP host–guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem. Sci. 7(7), 4073–4078 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Qu, S., Wang, X., Lu, Q., Liu, X., Wang, L.: A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed. 51(49), 12215–12218 (2012)CrossRefGoogle Scholar
  134. 134.
    Yang, S., Liu, L., You, M., Zhang, F., Liao, X., He, P.: The novel pillar[5]arene derivative for recyclable electrochemical sensing platform of homogeneous DNA hybridization. Sens. Actuat. B: Chem. 227, 497–503 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou UniversityGuiyangChina

Personalised recommendations