The direct synthesis of a substituted naphthopentathiepin for selective Co2+ ion recognition in aqueous solution

  • Harshit Arora
  • Priya Ranjan Sahoo
  • Arvind Kumar
  • Rajesh Kumar
  • Satish KumarEmail author
Original Article


A new pentahiepin based on 1-naphthol unit was synthesized by direct condensation method, which on crystallization yielded triclinic crystals in the P-1 space group. The crystal structure was analyzed computationally through Gaussian and CrystalExplorer software. An unusually high degree of short contacts originating from sulfur were observed. The intermolecular interaction investigations revealed that the sulfur atoms take a chair form suitable for metal coordination. Investigation of the affinity of the naphthopentathiepin towards metal ions revealed that the receptor forms a complex with Co2+ ions in 50% aqueous acetonitrile. By virtue of the cage type cavity offered by the pentathiepin derivative, it can form a complex with Co2+ ions in a sandwich fashion. The Job’s plot confirmed 2:1 binding stoichiometry.


Cobalt sensor Pentahiepin Colorimetric sensor DFT studies TD-DFT studies Crystal structure X-ray analysis Crystal explorer 



Authors sincerely thank SERB, New Delhi, India (No. EMR/2016/005022) and DRDO (ERIP/ER/DG-NSM/990116702/M/01/1645) for financial support. Authors are also thankful to KP for certain help. Authors are thankful to the Director, USIC University of Delhi for instrumental facilities. The authors are also thankful to the Principal, St. Stephen’s College for providing the necessary infrastructure.

Supplementary material

10847_2019_932_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1555 kb)


  1. 1.
    Anzenbacher, J.P., Lubal, P., Bucek, P., Palacios, M.A., Kozelkova, M.E.: A practical approach to optical cross-reactive sensor arrays. Chem. Soc. Rev. 39(10), 3954–3979 (2010). CrossRefPubMedGoogle Scholar
  2. 2.
    Wang, B., Anslyn, E.V. (eds.): Chemosensors: Principles, Strategies, and Applications. Wiley, Hoboken (2011)Google Scholar
  3. 3.
    Park, G.J., Na, Y.J., Jo, H.Y., Lee, S.A., Kim, C.: A colorimetric organic chemo-sensor for Co2+ in a fully aqueous environment. Dalton Trans. 43(18), 6618–6622 (2014)CrossRefPubMedGoogle Scholar
  4. 4.
    Zhen, S.J., Guo, F.L., Chen, L.Q., Li, Y.F., Zhang, Q., Huang, C.Z.: Visual detection of cobalt(ii) ion in vitro and tissue with a new type of leaf-like molecular microcrystal. Chem. Commun. 47(9), 2562–2564 (2011). CrossRefGoogle Scholar
  5. 5.
    Simonsen, L.O., Harbak, H., Bennekou, P.: Cobalt metabolism and toxicology—a brief update. Sci. Total Environ. 432, 210–215 (2012)CrossRefPubMedGoogle Scholar
  6. 6.
    Gupta, V., Jain, A.K., Al Khayat, M., Bhargava, S., Raisoni, J.: Electroanalytical studies on cobalt (II) selective potentiometric sensor based on bridge modified calixarene in poly (vinyl chloride). Electrochim. Acta 53(16), 5409–5414 (2008)CrossRefGoogle Scholar
  7. 7.
    Bian, W., Ma, J., Liu, Q., Wei, Y., Li, Y., Dong, C., Shuang, S.: A novel phosphorescence sensor for Co2+ ion based on Mn-doped ZnS quantum dots. Luminescence 29(2), 151–157 (2014)CrossRefPubMedGoogle Scholar
  8. 8.
    Maity, D., Kumar, V., Govindaraju, T.: Reactive probes for ratiometric detection of Co2+ and Cu+ based on excited-state intramolecular proton transfer mechanism. Org. Lett. 14(23), 6008–6011 (2012)CrossRefPubMedGoogle Scholar
  9. 9.
    Abebe, F.A., Eribal, C.S., Ramakrishna, G., Sinn, E.: A ‘turn-on’fluorescent sensor for the selective detection of cobalt and nickel ions in aqueous media. Tetrahedron Lett. 52(43), 5554–5558 (2011)CrossRefGoogle Scholar
  10. 10.
    Ghaedi, M., Shokrollahi, A., Ahmadi, F., Rajabi, H., Soylak, M.: Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry. J. Hazard. Mater. 150(3), 533–540 (2008)CrossRefPubMedGoogle Scholar
  11. 11.
    Rajabi Khorrami, A., Fakhari, A.R., Shamsipur, M., Naeimi, H.: Pre-concentration of ultra trace amounts of copper, zinc, cobalt and nickel in environmental water samples using modified C18 extraction disks and determination by inductively coupled plasma–optical emission spectrometry. Int. J. Environ. Anal. Chem. 89(5), 319–329 (2009)CrossRefGoogle Scholar
  12. 12.
    Shi, J., Lu, C., Yan, D., Ma, L.: High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosens. Bioelectron. 45, 58–64 (2013)CrossRefPubMedGoogle Scholar
  13. 13.
    Yousefi, S.R., Ahmadi, S.J.: Development a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt combined with flame atomic absorption spectrometry using microsample introduction system for preconcentration and determination of cobalt in water and saline samples. Microchim. Acta 172(1–2), 75–82 (2011)CrossRefGoogle Scholar
  14. 14.
    Liu, Z., Jia, X., Bian, P., Ma, Z.: A simple and novel system for colorimetric detection of cobalt ions. Analyst 139(3), 585–588 (2013)CrossRefGoogle Scholar
  15. 15.
    Wang, X., Zheng, W., Lin, H., Liu, G., Chen, Y., Fang, J.: A new selective phenanthroline-based fluorescent chemosensor for Co2+. Tetrahedron Lett. 50(14), 1536–1538 (2009)CrossRefGoogle Scholar
  16. 16.
    Singh, A.K., Mehtab, S., Saxena, P.: A novel potentiometric membrane sensor for determination of Co2+ based on 5-amino-3-methylisothiazole. Sens. Actuator B 120(2), 455–461 (2007)CrossRefGoogle Scholar
  17. 17.
    Mashhadizadeh, M.H., Sheikhshoaie, I.: Co2+-selective membrane electrode based on the Schiff base NADS. Anal. Bioanal. Chem. 375(5), 708–712 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    Saleem, M., Khang, C.H., Lee, K.H.: Chromo/fluorogenic detection of Co2+, Hg2+ and Cu2+ by the simple Schiff base sensor. J. Fluoresc. 26(1), 11–22 (2016)CrossRefPubMedGoogle Scholar
  19. 19.
    Bu, J., Duan, H., Wang, X., Xu, T., Meng, X., Qin, D.: New turn-on fluorescence sensors for Co2+ based on conjugated carbazole Schiff base. Res. Chem. Intermed. 41(5), 2767–2774 (2015)CrossRefGoogle Scholar
  20. 20.
    Wang, P., Li, Z., Lv, G.-C., Zhou, H.-P., Hou, C., Sun, W.-Y., Tian, Y.-P.: Zinc (II) complex with teirpyridine derivative ligand as “on–off” type fluorescent probe for cobalt (II) and nickel (II) ions. Inorg. Chem. Commun. 18, 87–91 (2012)CrossRefGoogle Scholar
  21. 21.
    Kajiwara, T., Iki, N., Yamashita, M.: Transition metal and lanthanide cluster complexes constructed with thiacalix [n] arene and its derivatives. Coord. Chem. Rev. 251(13–14), 1734–1746 (2007)CrossRefGoogle Scholar
  22. 22.
    Zintl, F., Persson, I.: Interactions of d10 metal ions and organic sulfur ligands in non-aqueous solvents. A thermodynamic study on the complex formation between mercury(II) and thiolates in pyridine, and between silver(I) and various sulfides in pyridine and dimethylsulfoxide. Inorg. Chim. Acta 131(1), 21–26 (1987). CrossRefGoogle Scholar
  23. 23.
    Worthington, M.J.H., Kucera, R.L., Chalker, J.M.: Green chemistry and polymers made from sulfur. Green Chem. 19(12), 2748–2761 (2017). CrossRefGoogle Scholar
  24. 24.
    Wang, K., Groom, M., Sheridan, R., Zhang, S., Block, E.: Liquid sulfur as a reagent: synthesis of polysulfanes with 20 or more sulfur atoms with characterization by UPLC-(Ag+)-coordination ion spray-MS. J. Sulfur Chem. 34(1–2), 55–66 (2013). CrossRefGoogle Scholar
  25. 25.
    Nolan, E.M., Lippard, S.J.: A “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc. 125(47), 14270–14271 (2003). CrossRefPubMedGoogle Scholar
  26. 26.
    Michel, S.L.J., Barrett, A.G.M., Hoffman, B.M.: Peripheral metal-ion binding to tris(thia–oxo crown) porphyrazines. Inorg. Chem. 42(3), 814–820 (2003). CrossRefPubMedGoogle Scholar
  27. 27.
    Heinrich, V.: Sulfur atoms as ligands in metal complexes. Angew. Chem. Int. Ed. Engl. 14(5), 322–329 (1975). CrossRefGoogle Scholar
  28. 28.
    Konstantinova, L.S., Rakitin, O.A., Rees, C.W.: Pentathiepins. Chem. Rev. 104(5), 2617–2630 (2004). CrossRefPubMedGoogle Scholar
  29. 29.
    Sheldrick, G.M.: SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. A 71(1), 3–8 (2015)CrossRefGoogle Scholar
  30. 30.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42(2), 339–341 (2009). CrossRefGoogle Scholar
  31. 31.
    Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., Streek, J.V., Wood, P.A.: Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 41(2), 466–470 (2008). CrossRefGoogle Scholar
  32. 32.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian Inc, Wallingford CT (2009)Google Scholar
  33. 33.
    Wolff, S.K., Grimwood, D.J., McKinnon, J.J., Turner, M.J., Jayatilaka, D., Spackman, M.A.: CrystalExplorer (Version 3.1)Google Scholar
  34. 34.
    Wolff, S., Grimwood, D., McKinnon, J., Jayatilaka, D., Spackman, M.: Crystalexplorer (Version 17.5)Google Scholar
  35. 35.
    McKinnon, J.J., Jayatilaka, D., Spackman, M.A.: Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 37, 3814–3816 (2007). CrossRefGoogle Scholar
  36. 36.
    Ganguly, T., Das, A., Jana, M., Majumdar, A.: Cobalt(II)-mediated desulfurization of thiophenes, sulfides, and thiols. Inorg. Chem. 57(18), 11306–11309 (2018). CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Harshit Arora
    • 1
  • Priya Ranjan Sahoo
    • 1
  • Arvind Kumar
    • 1
  • Rajesh Kumar
    • 2
  • Satish Kumar
    • 1
    Email author
  1. 1.Department of Chemistry, St. Stephen’s CollegeUniversity EnclaveDelhiIndia
  2. 2.Water Quality Management Group, DEST DivisionDefence LaboratoryJodhpurIndia

Personalised recommendations