A review of the production of slow-release flavor by formation inclusion complex with cyclodextrins and their derivatives

  • Guangyong Zhu
  • Guangxu Zhu
  • Zuobing XiaoEmail author
Review Article


Flavors have been widely used in many products. They are volatile compounds and do not often last long in air especially at high temperature. The techniques for slow flavor release and long-lasting scents, for the stability of sensory perception, are much desired. The inclusion complex method encompasses the idea of molecular recognition and interactions through noncovalent bonding. It can provide protection and prevent the loss of volatile aroma materials, and improve shelf-life and enhance the stability of the entrapped ingredients of flavors. In this article, the production of control-release flavor by inclusion complex method was reviewed in considerable detail. The host materials, the method of production flavor inclusion complex, and the methods of characterization of flavor inclusion complex were depicted. The complexation thermodynamics and calculations were also discussed. Cyclodextrins and their derivatives as the host materials were discussed in this paper. Methods of production flavor inclusion complex include solution method (water or water as the main component of the solution, cosolublizer), suspension method, gas/liquid interface method, and solid phase method (co-grinding method, heating in a closed container method, shaking method at room temperature). The methods of characterization of solid inclusion complex mainly include x-ray diffraction technique, Infrared and Raman spectra, solid nuclear magnetic resonance spectroscopy, thermal analysis, mass spectrometry analysis, scanning and transmission electron microscopy. Structures, energies, and some properties of molecules can be studied by computational chemistry. The application of computational chemistry to the study of flavor compound inclusion complexes were discussed. The review indicates that inclusion complex method is an efficient way for encapsulation of flavor compounds. By this method slow flavor release and long-lasting scents can be obtained.


Inclusion complex Flavor Preparation Characterization Thermodynamics 



This work was financially supported by the National Key R&D Program of China (2016YFA0200300), Shanghai Alliance Program (LM201844), and sponsored by Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development.


  1. 1.
    Wells, F.V., Billot, M.: Perfumery Technology: Art, Science, Industry. Ellis Horwood Ltd, New York (1981)Google Scholar
  2. 2.
    Zhang, C., Wang, Q.: Perfumery. China Light Industry Press, Beijing (1989). (in Chinese) Google Scholar
  3. 3.
    Yu, G., Wu, G.: Perfumery Technology. China Light Industry Press, Beijing (2006). (in Chinese) Google Scholar
  4. 4.
    Zhou, Y., Xiao, Z.: The Preparation Technology of Flavors. China Textile & Apparel Press, Beijing (2012). (in Chinese) Google Scholar
  5. 5.
    Sun, B., Chen, H.: The Technology of Food Flavoring. Chemical Industry Press, Beijing (2016). (in Chinese) Google Scholar
  6. 6.
    Surburg, H., Panten, J.: Common Fragrance and Flavor Materials. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2016)CrossRefGoogle Scholar
  7. 7.
    Zhu, G., Xiao, Z.: Creation and imitation of a milk flavor. Food Funct. 8, 1080–1084 (2017)CrossRefGoogle Scholar
  8. 8.
    Zhu, G., Xiao, Z.: Study on creation of an indocalamus leaf flavor. Food Sci. Technol. 35, 647–651 (2015)CrossRefGoogle Scholar
  9. 9.
    Zhu, G., Xiao, Z., Zhou, R., Lei, D.: Preparation and simulation of a taro flavor. Chin. J. Chem. Eng. 23, 1733–1735 (2015)CrossRefGoogle Scholar
  10. 10.
    Burdock, G.A.: Fenaroli’s Handbook of Flavor Ingredients. CRC Press, Boca Raton (2010)Google Scholar
  11. 11.
    Zhu, G., Xiao, Z., Zhou, R., Zhu, Y., Niu, Y.: Study on development of a fresh peach flavor. Adv. Mater. Res. 781–784, 1570–1573 (2013)CrossRefGoogle Scholar
  12. 12.
    Teixeira, M.A., Rodriguez, O., Gomes, P., Mata, V., Rodrigues, A.E.: Perfume Engineering. Elsevier, Amsterdam (2013)Google Scholar
  13. 13.
    Zhu, G., Xiao, Z., Zhou, R., Yi, F.: Fragrance and flavor microencapsulation technology. Adv. Mater. Res. 535–537, 440–445 (2012)CrossRefGoogle Scholar
  14. 14.
    Marques, H.M.C.: A review on cyclodextrin encapsulation of essontial oils and volatiles. Flavour Fragr. J. 25, 313–326 (2010)CrossRefGoogle Scholar
  15. 15.
    Ishiguro, T., Sakata, Y., Arima, H., Iohara, D., Anraku, M., Uekama, K., Hirayama, F.: Release control of fragrances by complexation with β-cyclodextrin and its derivatives. J. Incl. Phenom. Macrocycl. Chem. 92, 147–155 (2018)CrossRefGoogle Scholar
  16. 16.
    Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.T., Takaha, T.: Structure of the common cyclodextrins and their larger analogues-beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998)CrossRefGoogle Scholar
  17. 17.
    Takahashi, K.: Organic reactions mediated by cyclodextrins. Chem. Rev. 98, 2013–2033 (1998)CrossRefGoogle Scholar
  18. 18.
    Szejtli, J.: Cyclodextrin Technology. Springer, Netherlands (1988)CrossRefGoogle Scholar
  19. 19.
    Zhu, G., Xiao, Z., Zhou, R., Niu, Y.: Pyrolysis characteristics and kinetics of β-cyclodextrin and its two derivatives. Polish J. Chem. Technol. 17, 1–4 (2015)CrossRefGoogle Scholar
  20. 20.
    Yildiz, Z.I., Celebioglu, A., Kilic, M.E., Durgun, E., Uyar, T.: Menthol/cyclodextrin inclusion complex nanofibers: enhanced water solubility and high-temperature stability of menthol. J. Food Eng. 224, 27–36 (2018)CrossRefGoogle Scholar
  21. 21.
    Ciobanu, A., Landy, D., Fourmentin, S.: Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res. Int. 53, 110–114 (2013)CrossRefGoogle Scholar
  22. 22.
    Cai, R., Yuan, Y., Cui, L., Wang, Z., Yue, T.: Cyclodextrin-assisted extraction of phenolic compounds: current research and future prospects. Trends Food Sci. Tech. 79, 19–27 (2018)CrossRefGoogle Scholar
  23. 23.
    Rakmai, J., Cheirsilp, B., Cid, A., Torrado-Agrasar, A., Mejuto, J.C., Simal-Gandara, J.: Encapsulation of essential oils by cyclodextrins: characterization and evaluation. IntechOpen (2018). Google Scholar
  24. 24.
    Yildiz, Z.I., Celebioglu, A., Kilic, M.E., Durgun, E., Uyar, T.: Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. J. Mater. Sci. 53, 15837–15849 (2018)CrossRefGoogle Scholar
  25. 25.
    Kfoury, M., Pipkin, J.D., Antle, V., Fourmentin, S.: Captisol®: an efficient carrier and solubilizing agent for essential oils and their components. Flavour Fragr. J. 32, 340–346 (2017)CrossRefGoogle Scholar
  26. 26.
    Hadi, B.J., Sanagi, M.M., Ibrahim, W.A.W., Jamil, S., AbdullahiMu’azu, M., Aboul-Enein, H.Y.: Ultrasonic-assisted extraction of curcumin complexed with methyl-β-cyclodextrin. Food Anal. Methods 8, 1373–1381 (2015)CrossRefGoogle Scholar
  27. 27.
    Temel, G., Parali, T., Tulu, M., Arsu, N.: Photopolymerization of acrylamide with benzophenone/methylated-β-cyclodextrin inclusion complex in the presence of jeffamine based dendrimers as coinitiators in aqueous media. J. Photoch. Photobio. A 213, 46–51 (2010)CrossRefGoogle Scholar
  28. 28.
    Chittiteeranon, P., Soontaros, S., Pongsawasdi, P.: Preparation and characterization of inclusion complexes containing fixolide, a synthetic musk fragrance and cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 57, 69–73 (2007)CrossRefGoogle Scholar
  29. 29.
    Sangpheak, W., Kicuntod, J., Schuster, R., Rungrotmongkol, T., Wolschann, P., Kungwan, N., Viernstein, H., Mueller, M., Pongsawasdi, P.: Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin. Beilstein J. Org. Chem. 11, 2763–2773 (2015)CrossRefGoogle Scholar
  30. 30.
    Rehmann, L., Yoshii, H., Furuta, T.: Characteristics of modified β-cyclodextrin bound to cellulose powder. Starch 55, 313–318 (2003)CrossRefGoogle Scholar
  31. 31.
    Furuta, T., Kusuya, Y., Neoh, T.-L., Rehmann, L., Beak, S.-H., Yoshii, H.: Inclusion and release of hinokitiol into/from MCT-β-CD fixed on Japanese Washi paper. J. Incl. Phenom. Macrocycl. Chem. 56, 107–111 (2006)CrossRefGoogle Scholar
  32. 32.
    Khanna, S., Sharma, S., Chakraborty, J.N.: Performance assessment of fragrance finished cotton with cyclodextrin assisted anchoring hosts. Fash. Text. 2, 19 (2015)CrossRefGoogle Scholar
  33. 33.
    Wang, J., Chen, J.-Z.: Preparation of carboxymethyl-β-cyclodextrin. Food Sci. 30, 98–100 (2009). (in Chinese) Google Scholar
  34. 34.
    Zhang, Y., Jing, D.: Improved preparation of carboxymethyl-β-cyclodextrin. Spec. Petrochem. 30, 55–58 (2013). (in Chinese) Google Scholar
  35. 35.
    Takenaka, Y., Nakashima, H., Yoshida, N.: Fluorescent amino-β-cyclodextrin derivative as a receptor for various types of alcohols having cyclic and macrocyclic rings. J. Mol. Struct. 871, 149–155 (2007)CrossRefGoogle Scholar
  36. 36.
    Tong, L.: Cyclodextrin Chemistry: Fundamentals and Application. China Science Publishing & Medial Ltd., Beijing (2001)Google Scholar
  37. 37.
    Ren, X., Yue, S., Xiang, H., Xie, M.: Inclusion complexes of eucalyptus essential oil with β-cyclodextrin: preparation, characterization and controlled release. J. Porous Mat. 25, 1577–1586 (2018)CrossRefGoogle Scholar
  38. 38.
    Zhu, G., Xiao, Z., Zhou, R., Feng, N.: Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule. J. Food Sci. Technol. 52, 4607–4612 (2015)CrossRefGoogle Scholar
  39. 39.
    Reineccius, T.A., Reineccius, G.A., Peppard, T.L.: The effect of solvent interactions on alpha-, beta-, and gamma-cyclodextrin/flavor molecular inclusion complexes. J. Agric. Food Chem. 53, 388–392 (2005)CrossRefGoogle Scholar
  40. 40.
    Jin, Z.: Cyclodextrin Chemistry: Preparation and Application. Chemical Industry Press, Beijing (2009). (in Chinese) Google Scholar
  41. 41.
    Xiao, Z., Feng, N., Zhu, G., Niu, Y.: Preparation and application of citral-monochlorotriazine-β-cyclodextrin inclusion complex nanocapsule. J. Text. I. 107, 64–71 (2016)CrossRefGoogle Scholar
  42. 42.
    Petrović, G.M., Stojanović, G.S., Radulović, N.S.: Encapsulation of cinnamon oil in β-cyclodextrin. J. Med. Plants Res. 4, 1382–1390 (2010)Google Scholar
  43. 43.
    Barbieri, N., Sanchez-Contreras, A., Canto, A., Cauich-Rodriguez, J.V., Vargas-Coronado, R., Calvo-Irabien, L.M.: Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Ind. Crop Prod. 121, 114–123 (2018)CrossRefGoogle Scholar
  44. 44.
    Bhandari, B.R., D’Arcy, B.R., Bich, L.L.T.: Lemon oil to β-cyclodextrin ratio effect on the inclusion efficiency of β-cyclodextrin and the retention of oil volatiles in the complex. J. Agric. Food Chem. 46, 1494–1499 (1998)CrossRefGoogle Scholar
  45. 45.
    Padukka, I., Bhandari, B., D’Arcy, B.: Evaluation of various extraction methods of encapsulated oil from β-cyclodextrin-lemon oil complex powder. J. Food Compos. Anal. 13, 59–70 (2000)CrossRefGoogle Scholar
  46. 46.
    Reineccius, T.A., Reineccius, G.A., Peppard, T.L.: Utilization of β-cyclodextrin for improved flavor retention in thermally processed foods. J. Food Sci. 69, 58–62 (2004)CrossRefGoogle Scholar
  47. 47.
    Reineccius, T.A., Reineccius, G.A., Peppard, T.L.: Encapsulation of flavors using cyclodextrins: comparison of flavor retention in alpha, beta, and gamma types. J. Food Sci. 67, 3271–3279 (2002)CrossRefGoogle Scholar
  48. 48.
    Fernandes, L.P., Oliveira, W.P., Sztatisz, J., Szilágyi, I.M., Novák, C.: Solid state studies on molecular inclusions of lippia sidoides essential oil obtained by spray drying. J. Therm. Anal. Calorim. 95, 855–863 (2009)CrossRefGoogle Scholar
  49. 49.
    Fenyvesi, E., Zemlényi, C., Orgoványi, J., Oláh, E., Szente, L.: Can conversion mixture substitute beta-cyclodextrin in encapsulation of essential oils and their components? J. Incl. Phenom. Macrocycl. Chem. 86, 55–66 (2016)CrossRefGoogle Scholar
  50. 50.
    Martins, A.D.P., Craveiro, A.A., Machado, M.I.L., Raffin, F.N., Moura, T.F., Novák, C., Éhen, Z.: Preparation and characterization of mentha x villosa hudson oil-β-cyclodextrin complex. J. Therm. Anal. Calorim. 88, 363–371 (2007)CrossRefGoogle Scholar
  51. 51.
    Bhandari, B.R., D’Aecy, B.R., Padukka, I.: Encapsulation of lemon oil by paste method using β-cyclodextrin: encapsulation efficiency and profile of oil volatiles. J. Agric. Food Chem. 47, 5194–5197 (1999)CrossRefGoogle Scholar
  52. 52.
    Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)CrossRefGoogle Scholar
  53. 53.
    Zhu, G., Xiao, Z., Zhou, R., Zhu, G., Niu, Y.: Kinetics and release characteristics of menthyl acetate from its β-cyclodextrin inclusion complex by thermogravimetric analysis. J. Incl. Phenom. Macrocycl. Chem. 84, 219–224 (2016)CrossRefGoogle Scholar
  54. 54.
    Deng, S., Liu, H., Qi, C., Yang, A., Li, Z.: Study on preparation and inclusion behavior of inclusion complexes between β-cyclodextrin derivatives with benzophenone. J. Incl. Phenom. Macrocycl. Chem. 90, 321–329 (2018)CrossRefGoogle Scholar
  55. 55.
    Neto, A.C.D.R., Rocha, ABDOd, Maraschin, M., Piero, R.M.D., Almenar, E.: Factors affecting the entrapment efficiency of β-cyclodextrins and their effects on the formation of inclusion complexes containing essential oils. Food Hydrocoll. 77, 509–523 (2018)CrossRefGoogle Scholar
  56. 56.
    Mcnamara, M., Russell, N.R.: FT-IR and Raman spectra of a series of metallo-β-cyclodextrin complexes. J. Incl. Phenom. Mol. Recognit. Chem. 10, 485–495 (1991)CrossRefGoogle Scholar
  57. 57.
    Russell, N.R., Mcnamara, M.: FT-IR and Raman spectral evidence for metal complex formation with β-cyclodextrin as a first sphere ligand. J. Incl. Phenom. Mol. Recognit. Chem. 7, 455–460 (1989)CrossRefGoogle Scholar
  58. 58.
    Egyed, O.: Spectroscopic studies on β-cyclodextrin. Vib. Spectrosc. 1, 225–227 (1990)CrossRefGoogle Scholar
  59. 59.
    Tian, H., Xu, T., Dou, Y., Li, F., Yu, H., Ma, X.: Optimization and characterization of shrimp flavor nanocapsules containing 2,5-dimethylpyrazine using an inclusion approach. J. Food Process. Pres. 41, 1–8 (2017)Google Scholar
  60. 60.
    Guan, X.-L., Fu, J.-H., Tang, J.: Preparation process and property analysis of inclusion complex of lavender oil with hydroxypropyl-β-cyclodextrin. Food Sci. Technol. 42, 230–234 (2017). (in Chinese) Google Scholar
  61. 61.
    Amado, A.M., Ribeiro-Claro, P.J.A.: Selection of substituted benzaldehyde conformers by the cyclodextrin inclusion process: a Raman spectroscopic study. J. Raman Spectrosc. 31, 971–978 (2000)CrossRefGoogle Scholar
  62. 62.
    Chen, Q., Guo, P.: Study on the inclusion compound of menthol with hydroxypropyl-beta-cyclodextrin by Raman spectroscopy. China J. Pham. Anal. 29, 1528–1532 (2009). (in Chinese) Google Scholar
  63. 63.
    Zhang, M.-M., Liu, Y.-P., Yin, L.: Nuclear magnetic resonance technology to establish the interaction of cyclodextrin system. Guangzhou Chem. Ind. 39, 13–16 (2011)Google Scholar
  64. 64.
    Locci, E., Lai, S., Piras, A., Marongiu, B., Lai, A.: 13C-CPMAS and 1H-NMR study of the inclusion complexes of β-cyclodextrin with carvacrol, thymol, and eugenol. Prepared in supercritical carbon dioxide. Chem. Biodivers. 1, 1354–1366 (2004)CrossRefGoogle Scholar
  65. 65.
    Cao, S.-N., Zhang, Y., Jin, S.-S., Zhang, S., Yang, L.-P., Zhou, Y.-B.: Preparation and release characterization of inclusion complex of ethyl propionate with β-cyclodextrin. Sci. Technol. Food Ind. 36, 124–127 (2015). (in Chinese) Google Scholar
  66. 66.
    Cao, S., Zhang, Y., Jin, S., Zhang, S., Yang, L., Zhou, Y.: Preparation and release characterization of valeric acid-α-cyclodextrin inclusion complex. J. Anhui Agr. Univ. 42, 700–705 (2015)Google Scholar
  67. 67.
    Yang, Z., Huang, L., Yao, X., Ji, H.: Host-guest complexes of estragole with β-cyclodextrin: an experimental and theoretical investigation. Flavour Fragr. J. 32, 102–111 (2017)CrossRefGoogle Scholar
  68. 68.
    Zhang, G., Yuan, C., Sun, Y.: Effect of selective encapsulation of hydroxypropyl-β-cyclodextrin on components and antibacterial properties of star anise essential oil. Molecules 23, 1126 (2018)CrossRefGoogle Scholar
  69. 69.
    Yang, Z., Yao, X., Xiao, Z., Chen, H., Ji, H.: Preparation and release behaviour of the inclusion complexes of phenylethanol with β-cyclodextrin. Flavour Fragr. J. 31, 206–216 (2016)CrossRefGoogle Scholar
  70. 70.
    Dou, S., Ouyang, Q., You, K., Qian, J., Tao, N.: An inclusion complex of thymol into β-cyclodextrin and its antifungal activity against Geotrichum citri-aurantii. Postharvest Biol. Technol. 138, 31–36 (2018)CrossRefGoogle Scholar
  71. 71.
    Barbieri, N., Sanchez-Contreras, A., Canto, A., Cauich-Rodriguez, J.V., Vargas-Coronado, R., Calvo-Irabien, L.M.: Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Ind. Crop. Prod. 121, 114–123 (2018)CrossRefGoogle Scholar
  72. 72.
    Zhu, G., Xiao, Z., Zhu, G., Zhou, R., Niu, Y.: Encapsulation of l-menthol in hydroxypropyl-β-cyclodextrin and release characteristics of the inclusion complex. Polish J. Chem. Technol. 18, 110–116 (2016)CrossRefGoogle Scholar
  73. 73.
    Wadhwa, G., Kumar, S., Chhabra, L., Mahant, S., Rao, R.: Essential oil–cyclodextrin complexes: an updated review. J. Incl. Phenom. Macrocycl. Chem. 89, 39–58 (2017)CrossRefGoogle Scholar
  74. 74.
    Ozdemir, N., Pola, C.C., Teixeira, B.N., Hill, L.E., Bayrak, A., Gomes, C.L.: Preparation of black pepper oleoresin inclusion complexes based on beta-cyclodextrin for antioxidant and antimicrobial delivery applications using kneading and freeze drying methods: a comparative study. LWT—Food Sci. Technol. 91, 439–445 (2018)Google Scholar
  75. 75.
    Zhu, G., Xiao, Z., Zhu, G.: Preparation, characterization and the release kinetics of mentha-8-thiol-3-one-β-cyclodextrin inclusion complex. Polym. Bull. 74, 2263–2275 (2017)CrossRefGoogle Scholar
  76. 76.
    Zhu, G., Xiao, Z., Zhou, R., Zhu, Y.: Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. Carbohyd. Polym. 105, 75–80 (2014)CrossRefGoogle Scholar
  77. 77.
    Bonetti, P., Moraes, F.F.S., Zanin, G.M., Bergamasco, R.D.C.: Thermal behavior study and decomposition kinetics of linalool/b-cyclodextrin inclusion complex. Polym. Bull. 73, 279–291 (2016)CrossRefGoogle Scholar
  78. 78.
    Oliva, E., Mathiron, D., Bertaut, E., Landy, D., Cailleu, D., Pilard, S., Clément, C., Courot, E., Bonnet, V., Djedaïni-Pilard, F.: Physico-chemical studies of resveratrol, methyl jasmonate and cyclodextrin interactions: an approach to resveratrol bioproduction optimization. RSC Adv. 8, 1528–1538 (2018)CrossRefGoogle Scholar
  79. 79.
    Zhang, Y., Zhou, Y., Cao, S., Li, S., Jin, S., Zhang, S.: Preparation, release and physicochemical characterisation of ethyl butyrate and hexanal inclusion complexes with β- and γ-cyclodextrin. J. Microencapsul. 32, 711–718 (2015)CrossRefGoogle Scholar
  80. 80.
    Barbieri, N., Sanchez-Contreras, A., Canto, A., Cauich-Rodriguez, J.V., Vargas-Coronado, R., Calvo-Irabien, L.M.: Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Ind. Crop. Prod. 121, 114–123 (2018)CrossRefGoogle Scholar
  81. 81.
    He, Y., Hu, P., Shen, X., Gao, H.: Cyclodextrin-based aggregates and characterization by microscopy. Micron 39, 495–516 (2008)CrossRefGoogle Scholar
  82. 82.
    Bonini, M., Rossi, S., Karlsson, G., Almgren, M., Nostro, P.L., Baglioni, P.: Self-assembly of β-cyclodextrin in water. Part 1: cryo-TEM and dynamic and static light scattering. Langmuir 22, 1478–1484 (2006)CrossRefGoogle Scholar
  83. 83.
    Zhu, G., Feng, N., Xiao, Z., Zhou, R., Niu, Y.: Production and pyrolysis characteristics of citral-monochlorotriazinyl-β-cyclodextrin inclusion complex. J. Therm. Anal. Calorim. 120, 1811–1817 (2015)CrossRefGoogle Scholar
  84. 84.
    Hill, L.E., Gomes, C., Taylor, T.M.: Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT—Food Sci. Technol. 51, 86–93 (2018)Google Scholar
  85. 85.
    Charumanee, S., Titwan, A., Sirithunyalug, J., Weiss-Greiler, P., Wolschann, P., Viernstein, H., Okonogi, S.: Thermodynamics of the encapsulation by cyclodextrins. J. Chem. Technol. Biotechnol. 81, 523–529 (2006)CrossRefGoogle Scholar
  86. 86.
    Tian, X.-N., Jiang, Z.-T., Li, R.: Inclusion interactions and molecular microcapsule of Salvia sclarea L. essential oil with β-cyclodextrin derivatives. Eur. Food Res. Technol. 227, 1001–1007 (2008)CrossRefGoogle Scholar
  87. 87.
    Chai, K., Xu, Z., Zheng, L., Zhou, L., Tong, Z., Ji, H.: Facile separation of cinnamyl acetate and cinnamaldehyde based on host–guest complexation with β-cyclodextrin. Flav. Fragr. J. 33, 285–293 (2018)CrossRefGoogle Scholar
  88. 88.
    Jiang, S., Li, J.-N., Jiang, Z.-T.: Inclusion reactions of β-cyclodextrin and its derivatives with cinnamaldehyde in Cinnamomum loureirii essential oil. Eur. Food Res. Technol. 230, 543–550 (2010)CrossRefGoogle Scholar
  89. 89.
    Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)CrossRefGoogle Scholar
  90. 90.
    Baránková, E., Dohnal, V.: Effect of additives on volatility of aroma compounds from dilute aqueous solutions. Fluid Phase Equilibr. 407, 217–223 (2016)CrossRefGoogle Scholar
  91. 91.
    Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98, 1829–1873 (1998)CrossRefGoogle Scholar
  92. 92.
    Magdalena, C., Kamila, S., Monika, A., Małgorzata, W.-R., Ewa, K., Kinga, S.: Study of β-cyclodextrin inclusion complexes with volatile molecules geraniol and α-terpineol enantiomers in solid state and in solution. Chem. Phys. Lett. 641, 44–50 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Shanghai Institute of TechnologyShanghaiChina
  2. 2.OttawaCanada

Personalised recommendations