Advertisement

Study of conformation and hydrogen bonds in the p-1-adamantylcalix[8]arene by IR spectroscopy and DFT

  • V. L. FurerEmail author
  • L. I. Potapova
  • I. M. Vatsouro
  • V. V. Kovalev
  • E. A. Shokova
  • V. I. KovalenkoEmail author
Original Article
  • 113 Downloads

Abstract

The hydrogen bonds and the conformations of calix[8]arene molecules with p-tert-butyl and p-1-adamantyl substituents were studied by infrared spectroscopy in different states. The conformations, the reactivity, the charge distribution and the IR spectra of the calixarenes were calculated by the DFT method with the PBE functional and a TZVP basis set. We compare the IR spectra of calix[8]arene molecules in the conformation of the pleated loop and the chair. The optimized geometry of the molecules reproduces the experimental X-ray data. The conformation chair is 20 kcal/mol less preferable than the conformation pleated loop. The conformation of a pleated loop is the most stable in the solid state and solution. Hydrogen bonds determine the stability of this structure. In the p-1-adamantylcalix[8]arene, stronger hydrogen bonds are realized compared to p-tert-butylcalix[8]arene. The observed IR spectra were interpreted using the calculated potential energy distribution with the quantum-chemical force constants. The theoretical absorption curves calculated for the pleated loop conformation correspond to the experimental IR spectra of the calix[8]arenes.

Keywords

Calixarenes IR spectra Hydrogen bonding Normal vibrations DFT 

Notes

Acknowledgement

Thanks to Prof. Dr. I.S. Antipin and Prof. Dr. S.E. Solovieva for kindly prepared p-tert-butylcalix[8]arene.

Supplementary material

10847_2019_916_MOESM1_ESM.doc (147 kb)
Supplementary material 1 (DOC 147 kb)

References

  1. 1.
    Gutsche, C.D.: Calixarenes Revisited. The Royal Society of Chemistry, Cambridge (1998)Google Scholar
  2. 2.
    Vicens, J., Bohmer, V.: Calixarenes: A Versatile Class of Macrocyclic Compounds. Kluwer Academic Publishers, Boston (1991)Google Scholar
  3. 3.
    Konig, B., Fonseca, M.H.: Heteroatom-bridged calixarenes. Eur. J. Inorg. Chem. 2000, 2303–2310 (2000)CrossRefGoogle Scholar
  4. 4.
    Opaprakasit, P., Scaroni, A., Painter, P.: Intramolecular hydrogen bonding and calixarene-like structures in p-cresol/formaldehyde resins. J. Mol. Struct. 570, 25–35 (2001)CrossRefGoogle Scholar
  5. 5.
    Lutz, B.T.G., Astarloa, G., van der Maas, J.H., Janssen, R.G., Verboom, W., Reinhoudt, D.N.: Conformational isomerism and self-association of calixarene building blocs in non-polar solution solution studied by Fourier transform infrared spectrometry. Vib. Spectrosc. 10, 29–40 (1995)CrossRefGoogle Scholar
  6. 6.
    Shokova, E.A., Khomich, E.V., Akhmetov, N.N., Vatsuro, I.M., Luzikov, YuN, Kovalev, V.V.: Synthesis and conformations of adamantylated calix[5]- and -[6]arenes. Russ. J. Org. Chem. 39, 368–383 (2003)CrossRefGoogle Scholar
  7. 7.
    Czugler, M., Tisza, S., Speier, G.: Versatility in inclusion hosts. Unusual conformation in the crystal structure of the p-t-butylcalix[8]arene: pyridine (1:8) clathrate. J. Incl. Phenom. 11, 323–331 (1991)CrossRefGoogle Scholar
  8. 8.
    Schatz, J., Schildbach, F., Lentz, A., Rastatter, S., Schilling, J., Dormann, J., Ruoff, A., Debaerdemaeker, T.Z.: The inclusion of carbon disulfide in p-tert-butylcalix[4]- and [6]arene-A combined crystallographic and vibrational spectroscopic study. Teil B 55, 213–221 (2000)Google Scholar
  9. 9.
    Billes, F., Mohammed-Ziegler, I.: Ab initio equilibrium geometry and vibrational spectroscopic study of 25,26,27,28-tetrahydroxycalix[4]arene. Supramol. Chem. 14, 451–459 (2002)CrossRefGoogle Scholar
  10. 10.
    Katsyuba, S.A., Kovalenko, V.I., Chernova, A.V., Vandyukova, E.E., Zverev, V.V., Shagidullin, R.R., Antipin, I.S., Solovieva, S.E., Stoikov, I., Konovalov, A.I.: Vibrational spectra, co-operative intramolecular hydrogen bonding and conformations of calix[4]arene and thiacalix[4]arene molecules and their para-tert-butyl derivatives. Org. Biomol. Chem. 3, 2558–2565 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    Furer, V.L., Borisoglebskaya, E.I., Kovalenko, V.I.: Band intensity in the IR spectra and conformations of calix[4]arene and thiacalix[4]arene. Spectrochim. Acta. 61, 355–359 (2005)CrossRefGoogle Scholar
  12. 12.
    Furer, V.L., Borisoglebskaya, E.I., Zverev, V.V., Kovalenko, V.I.: The hydrogen bonding and conformations of p-tert-butylcalix[4]arene as studied by IR spectroscopy and by DFT calculations. Spectrochim. Acta 62, 483–493 (2005)CrossRefGoogle Scholar
  13. 13.
    Furer, V.L., Borisoglebskaya, E.I., Zverev, V.V., Kovalenko, V.I.: DFT and IR spectroscopic analysis of p-tert-butylthiacalix[4]arene. Spectrochim. Acta 63, 207–212 (2006)CrossRefGoogle Scholar
  14. 14.
    Furer, V.L., Potapova, L.I., Kovalenko, V.I.: DFT study of hydrogen bonding and IR spectra of calix[6]arene. J. Mol. Struct. 1128, 439–447 (2017)CrossRefGoogle Scholar
  15. 15.
    Brzezinski, B., Urjasz, H., Zundel, G.: Cyclic hydrogen-bonded system with large proton polarizability in calixarenes. An FTIR study. J. Phys. Chem. 100, 9021–9023 (1996)CrossRefGoogle Scholar
  16. 16.
    Konishi, H., Ohata, K., Morikawa, O., Kobayashi, K.: Calix[6]resorcinearenes: the first examples of [16]metacyclophanes derived from resorcinols. J. Chem. Soc. Chem. Commun. 56, 309–310 (1995)CrossRefGoogle Scholar
  17. 17.
    Lang, J., Deckerova, V., Czernek, J., Lhotak, P.: Dynamics of circular hydrogen bond array in calix[4]arene in a nonpolar solvent: a nuclear magnetic resonance study. J. Chem. Phys. 122, 044506–044510 (2005)CrossRefGoogle Scholar
  18. 18.
    Billes, F., Mohammed-Ziegler, I.: Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model. J. Mol. Model 18, 3627–3637 (2012)CrossRefPubMedGoogle Scholar
  19. 19.
    Cerioni, G., Biali, S., Rappoport, Z.: Hydrogen bonding in calix[n]arenes. A preliminary 17O NMR study. Tetrahedron Lett. 37, 5797–5800 (1996)CrossRefGoogle Scholar
  20. 20.
    Kovalenko, V.I., Maklakov, L.I., Borisoglebskaya, E.I., Potapova, L.I., Shokova, E.А., Vatsuro, I.М., Kovalev, V.V.: Intramolecular co-operative hydrogen bond in calix[n]arenes (n = 4, 6, 8) bearing bulky substituents. Russ. Chem. Bull. Int. Ed. 56, 1103–1109 (2007)CrossRefGoogle Scholar
  21. 21.
    Athar, M., Lone, M.Y., Jha, P.C.: Theoretical assessment of calix[n]arene as drug carries for second generation tyrosine kinase inhibitors. J. Mol. Liq. 247, 448–455 (2017)CrossRefGoogle Scholar
  22. 22.
    Galindo-Murillo, R., Angilar-Suarez, L.E., Barroso-Flores, J.: A mixed DFT-MD methodology for the in silico development of drug releasing macrocycles. Calix and thia-calix[N]arenes as carriers for Bosutinib and Sorafenib. J. Comput. Chem. 37, 940–946 (2016)CrossRefPubMedGoogle Scholar
  23. 23.
    Shahabi, M., Raissi, H.: Assessment of solvent effects on the inclusion behavior of pyrazinamide drug into cyclic peptide based nanotubes as novel drug delivery vehicles. J. Mol. Liq. 268, 326 (2018)CrossRefGoogle Scholar
  24. 24.
    Oguz, M., Bhatti, A.A., Karakurt, S., Aktas, M., Yilmaz, M.: New water soluble Hg2+ selective fluorescent calix[4]arenes: synthesis and applications in living cells imaging. Spectrochim. Acta 171, 340–345 (2017)CrossRefGoogle Scholar
  25. 25.
    Lubitov, I.E., Shokova, E.А., Kovalev, V.V.: New class of host molecules. p-1-Adamantylcalix[8]arenes. Synlett 1993, 647–648 (1993)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Perdew, J.P., Burke, K., Erznzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefPubMedGoogle Scholar
  28. 28.
    Erznzerhof, M., Scuseria, G.E.: Assessment of the Perdew–Burke–Erzernhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999)CrossRefGoogle Scholar
  29. 29.
    Laikov, D.N.: Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett. 281, 151–156 (1997)CrossRefGoogle Scholar
  30. 30.
    Laikov, D.N., Ustynyuk, YuA: PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull. Int. Ed. 54, 820–826 (2005)CrossRefGoogle Scholar
  31. 31.
    Sipachev, V.A.: Calculation of shrinkage corrections in harmonic approximation. J. Mol. Struct. (Theochem) 121, 143–151 (1985)CrossRefGoogle Scholar
  32. 32.
    Glendening, E.D., Landis, C.R., Weinhold, F.: Natural bond orbital methods. Comput. Mol. Sci. 2, 1–42 (2012)CrossRefGoogle Scholar
  33. 33.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision C.01. Gaussian Inc., Wallingford (2010)Google Scholar
  34. 34.
    Parr, R.G., Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)CrossRefGoogle Scholar
  35. 35.
    Steinbach, C., Farnik, M., Ettischer, I., Siebers, J., Buck, U.: Isomeric transitions in size-selected methanol hexamers probed by OH-stretch spectroscopy. Phys. Chem. Chem. Phys. 8, 2752–2758 (2006)CrossRefPubMedGoogle Scholar
  36. 36.
    Atwood, J.L., Barbour, L.J., Jerga, A.: Organization of the interior of molecular capsules by hydrogen bonding. Proc. Nat. Acad. Sci. 99, 4837–4841 (2002)CrossRefPubMedGoogle Scholar
  37. 37.
    Atwood, J.L., Barbour, L.J., Heaven, M.W., Raston, C.L.: C60 and C70 compounds in the pincerlike jaws of calix[6]arene. Angew. Chem. 37, 981–983 (1998)CrossRefGoogle Scholar
  38. 38.
    Wiberg, K.A.: Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24, 1083–1096 (1968)CrossRefGoogle Scholar
  39. 39.
    Novikov, A.N., Bacherikov, V.A., Shapiro, YuE, Gren, A.I.: Ab initio and density functional studies of cooperative hydrogen bonding in calix [4]-and calix [6]arenes. J. Struct. Chem. 47, 1003–1015 (2006)CrossRefGoogle Scholar
  40. 40.
    Ugozzoli, F., Andretti, G.D.: Symbolic representation of the molecular conformation of calixarenes. J. Incl. Phenom. 13, 337–348 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • V. L. Furer
    • 1
    Email author
  • L. I. Potapova
    • 1
  • I. M. Vatsouro
    • 2
  • V. V. Kovalev
    • 2
  • E. A. Shokova
    • 2
  • V. I. Kovalenko
    • 3
    • 4
    Email author
  1. 1.Kazan State Architect and Civil Engineering UniversityKazanRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia
  3. 3.A.E. Arbuzov Institute of Organic and Physical Chemistry, RASKazanRussia
  4. 4.Kazan National Research Technological UniversityKazanRussia

Personalised recommendations