Isosteviol preparation and inclusion complexation of it with γ-cyclodextrin

  • Hui-da WanEmail author
  • Guang-zhao He
  • Hong-jian Zhang
Original Article


Isosteviol (Ist), a tetracyclic diterpenoid along with its structural derivatives, have received considerable attention due to its broad biological activities. Because of its low natural abundance, large scale utility of Ist has been limited. The present study described a method of preparing Ist using the typical Lewis acid approach, and the properties of its inclusion complex, namely γ-cyclodextrin/isosteviol (γ-CD/Ist), were also evaluated. Firstly, Ist was prepared from stevioside with Lewis acid. Fe3+ was the optimal catalyst and complete conversion of stevioside with a yield of 83.2% of Ist were obtained. To improve Ist aqueous solubility, γ-CD/Ist complexation was investigated. Results showed that aqueous solubility of Ist increased by 185-fold with an 1:1 γ-CD/Ist inclusion complex. At the ambient temperature, γ-CD/Ist complex aqueous solution maintained relatively unchanged at neutral and slightly higher pH values after 30 days. To our knowledge, the present study was the first such an effort on the preparation of Ist using Lewis acid and improvement of its solubility through γ-CD inclusion complex.


Isosteviol Lewis acid Catalysis Inclusion complex γ-CD 



The authors were grateful to the financial support by National Natural Science Foundation of China (Grant# 81473278). We also appreciated the teachers from the State Key Lab of Food Science and Technology for kindly help with the structural characterization.

Supplementary material

10847_2019_907_MOESM1_ESM.docx (68 kb)
Supplementary material 1 (DOCX 68 kb)


  1. 1.
    Ullah, A., Munir, S., Mabkhot, Y., Badshah, S.L.: Bioactivity profile of the diterpene isosteviol and its derivatives. Molecules 24(4), 678 (2019)CrossRefGoogle Scholar
  2. 2.
    Malki, A., El-Sharkawy, A., El Syaed, M., Bergmeier, S.: Antitumor activities of the novel isosteviol derivative 10c against liver cancer. Anticancer Res. 37(4), 1591–1601 (2017)CrossRefGoogle Scholar
  3. 3.
    Liu, C.J., Zhang, T., Yu, S.L., Dai, X.J., Wu, Y., Tao, J.C.: Synthesis, cytotoxic activity, and 2D-and 3D-QSAR studies of 19-carboxyl-modified novel isosteviol derivatives as potential anticancer agents. Chem. Biol. Drug Des. 89(6), 870–887 (2017)CrossRefGoogle Scholar
  4. 4.
    Liu, C.J., Yu, S.L., Liu, Y.P., Dai, X.J., Wu, Y., Li, R.J., Tao, J.C.: Synthesis, cytotoxic activity evaluation and HQSAR study of novel isosteviol derivatives as potential anticancer agents. Eur. J. Med. Chem. 115, 26–40 (2016)CrossRefGoogle Scholar
  5. 5.
    Huang, T.J., Chou, B.H., Lin, C.W., Weng, J.H., Chou, C.H., Yang, L.M., Lin, S.J.: Synthesis and antiviral effects of isosteviol-derived analogues against the hepatitis B virus. Phytochemistry 99, 107–114 (2014)CrossRefGoogle Scholar
  6. 6.
    Huang, T.J., Yang, C.L., Kuo, Y.C., Chang, Y.C., Yang, L.M., Chou, B.H., Lin, S.J.: Synthesis and anti-hepatitis B virus activity of C4 amide-substituted isosteviol derivatives. Future Med Chem 23(4), 720–728 (2015)Google Scholar
  7. 7.
    Abdullah, A.-D.N., Valan, A.M., Rejiniemon, T.S.: In vitro antibacterial, antifungal, antibiofilm, antioxidant, and anticancer properties of isosteviol isolated from endangered medicinal plant pittosporum tetraspermum. Evid-Based Compl. Alt. 2015, 164261 (2015)Google Scholar
  8. 8.
    Khaybullin, R.N., Liang, X., Cisneros, K., Qi, X.: Synthesis and anticancer evaluation of complex unsaturated isosteviol-derived triazole conjugates. Future Med. Chem. 7(18), 2419–2428 (2015)CrossRefGoogle Scholar
  9. 9.
    Zhang, H., Sun, X., Xie, Y., Zan, J., Tan, W.: Isosteviol sodium protects against permanent cerebral ischemia injury in mice via inhibition of NF-κB-mediated inflammatory and apoptotic responses. J. Stroke Cerebrovasc. 26(11), 2603–2614 (2017)CrossRefGoogle Scholar
  10. 10.
    Hu, H., Sun, X., Tian, F., Zhang, H., Liu, Q., Tan, W.: Neuroprotective effects of isosteviol sodium injection on acute focal cerebral ischemia in rats. Oxid. Med. Cell Longev. 2016, 1–10 (2016)Google Scholar
  11. 11.
    Xu, D., Xu, M., Lin, L., Rao, S., Wang, J., Davey, A.K.: The effect of isosteviol on hyperglycemia and dyslipidemia induced by lipotoxicity in rats fed with high-fat emulsion. Life Sci. 90(1–2), 30–38 (2012)CrossRefGoogle Scholar
  12. 12.
    Urban, J.D., Carakostas, M.C., Taylor, S.L.: Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens? Food Chem. Toxicol. 75, 71–78 (2015)CrossRefGoogle Scholar
  13. 13.
    Koubaa, M., Rosello-Soto, E., Sic Zlabur, J., Rezek Jambrak, A., Brncic, M., Grimi, N., Boussetta, N., Barba, F.J.: Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. J. Agric. Food Chem. 63(31), 6835–6846 (2015)CrossRefGoogle Scholar
  14. 14.
    Gasmalla, M.A.A., Yang, R.J., Hua, X.: Stevia rebaudiana Bertoni: an alternative sugar replacer and its application in food industry. Food Eng Rev 6(4), 150–162 (2014)CrossRefGoogle Scholar
  15. 15.
    Avent, A.G., Hanson, J.R., Deoliveira, B.H.: Hydrolysis of the diterpenoid glycoside, stevioside. Phytochemistry 29(8), 2712–2715 (1990)CrossRefGoogle Scholar
  16. 16.
    Chen, J., Sun, M., Cai, J., Cao, M., Zhou, W., Ji, M.: The synthesis and crystal structure of (4α,8β,13β,16β)-13-methyl-16,18-diol-17-norkaurane: a simultaneous reduction product of isosteviol. J. Chem. Crystallogr. 41(4), 519–522 (2011)CrossRefGoogle Scholar
  17. 17.
    Milagre, H.M., Martins, L.R., Takahashi, J.A.: Novel agents for enzymatic and fungal hydrolysis of stevioside. Braz. J. Microbiol. 40(2), 367–372 (2009)CrossRefGoogle Scholar
  18. 18.
    Lohoelter, C., Weckbecker, M., Waldvogel, S.R.: (-)-Isosteviol as a versatile ex-chiral-pool building block for organic chemistry. Eur. J. Org. Chem. 2013(25), 5539–5554 (2013)CrossRefGoogle Scholar
  19. 19.
    Pang, S., Ma, C., Zhang, N., He, L.: Investigation of the solubility enhancement mechanism of rebaudioside D using a solid dispersion technique with potassium sorbate as a carrier. Food Chem. 174, 564–570 (2015)CrossRefGoogle Scholar
  20. 20.
    Lu, T., Xia, Y.M.: Transglycosylation specificity of glycosyl donors in transglycosylation of stevioside catalysed by cyclodextrin glucanotransferase. Food Chem. 159, 151–156 (2014)CrossRefGoogle Scholar
  21. 21.
    Wan, H.D., Xia, Y.M.: Enzymatic transformation of stevioside using a β-galactosidase from Sulfolobus sp. Food Funct. 6(10), 3291–3295 (2015)CrossRefGoogle Scholar
  22. 22.
    Musa, A., Miao, M., Zhang, T., Jiang, B.: Biotransformation of stevioside by Leuconostoc citreum SK24.002 alternansucrase acceptor reaction. Food Chem. 146, 23–29 (2014)CrossRefGoogle Scholar
  23. 23.
    Lemus-Mondaca, R., Vega-Galvez, A., Zura-Bravo, L., Ah-Hen, K.: Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 132(3), 1121–1132 (2012)CrossRefGoogle Scholar
  24. 24.
    Liu, G., Yuan, Q., Hollett, G., Zhao, W., Kang, Y., Wu, J.: Cyclodextrin-based host-guest supramolecular hydrogel and its application in biomedical fields. Polymer Chem. 9(25), 3436–3449 (2018)CrossRefGoogle Scholar
  25. 25.
    Saokham, P., Muankaew, C., Jansook, P., Loftsson, T.: Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules (2018). Google Scholar
  26. 26.
    Wang, J.P., Jin, Z.Y., Xu, X.M.: γ-Cyclodextrin on enhancement of water solubility and store stability of nystatin. J. Incl. Phenom. Macrocycl. 78(1–4), 145–150 (2014)CrossRefGoogle Scholar
  27. 27.
    Wu, Y., Shi, R., Wu, Y.L., Holcroft, J.M., Liu, Z., Frasconi, M., Wasielewski, M.R., Li, H., Stoddart, J.F.: Complexation of polyoxometalates with cyclodextrins. J. Am. Chem. Soc. 137(12), 4111–4118 (2015)CrossRefGoogle Scholar
  28. 28.
    Ohtani, K., Aikawa, Y., Fujisawa, Y., Kasai, R., Tanaka, O., Yamasaki, K.: Solubilization of steviolbioside and steviolmonoside with γ-cyclodextrin and its application to selective syntheses of better sweet glycosides from stevioside and rubusoside. Chem. Pharm. Bull. 39(12), 3172–3174 (1991)CrossRefGoogle Scholar
  29. 29.
    Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instr. 4, 117–212 (1965)Google Scholar
  30. 30.
    Wan, H-d, Ni, Y., Zhang, H.-J., Li, D., Wang, D-wJJoIP, Chemistry, M.: Enzymatic production of steviol using a commercial β-glucosidase and preparation of its inclusion complex with γ-CD. J. Incl. Phenom. Macrocycl. Chem. 93(3), 193–201 (2019)CrossRefGoogle Scholar
  31. 31.
    Lopez-Nicolas, J.M., Nunez-Delicado, E., Perez-Lopez, A.J., Barrachina, A.C., Cuadra-Crespo, P.: Determination of stoichiometric coefficients and apparent formation constants for β-cyclodextrin complexes of trans-resveratrol using reversed-phase liquid chromatography. J. Chromatogr. A 1135(2), 158–165 (2006)CrossRefGoogle Scholar
  32. 32.
    Reyes-Reyes, M.L., Roa-Morales, G., Melgar-Fernández, R., Reyes-Pérez, H., Gómez-Oliván, L.M., Gonzalez-Rivas, N., Bautista-Renedo, J., Balderas-Hernández, P.: Chiral recognition of abacavir enantiomers by (2-hydroxy)propyl-β-cyclodextrin: UHPLC, NMR and DFT studies. J. Incl. Phenom. Macrocycl. 82(3–4), 373–382 (2015)CrossRefGoogle Scholar
  33. 33.
    Liao, Y., Zhang, X., Li, C., Huang, Y., Lei, M., Yan, M., Zhou, Y., Zhao, C.: Inclusion complexes of HP-β-cyclodextrin with agomelatine: preparation, characterization, mechanism study and in vivo evaluation. Carbohydr. Polym. 147, 415–425 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
  2. 2.Affiliated Changzhou Cancer HospitalSoochow UniversityChangzhouChina
  3. 3.School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations