Advertisement

The selective cleavage of lignin aliphatic C–O linkages by solvent-assisted fast pyrolysis (SAFP)

  • Masih Rashidi
  • Jorge Norberto BeltraminiEmail author
  • Darren MartinEmail author
Original Article
  • 11 Downloads

Abstract

We report the effect of an organic solvent on the selective cleavage of individual lignin model compounds and lignin C–O linkages during the fast thermal pyrolysis of lignin. During this process, it was possible to lower the aliphatic hydroxyl contents of lignin, along with increasing the amount of single and double bonded aliphatics. It was found that the addition of solvent during fast pyrolysis of lignin lowered the molecular weight distribution of the obtained bio-oil (~ 49–52% decrease) and at the same time inhibited the formation of a high amount of char. A detailed study of the cleavage of complex model compounds using Ethanol-Assisted Fast Pyrolysis (EAFP) revealed that the aliphatic hydroxyl groups and etheric linkages are very reactive during this process. By the use of deuterated lignin model compounds and solvent, it was then possible to elucidate the mechanism for cleavage of lignin in the EAFP process that involves the formation of a transition state between solvent and oxygen bonds of lignin. This transition state involves the cleavage of etheric bonds by the in situ transfer of hydrogen from ethanol to this linkage.

Keywords

Lignin cleavage Solvent assisted fast pyrolysis Lignin model compounds Carbohydrates 

Notes

Acknowledgements

“Australian Institute for Bioengineering and Nanotechnology (AIBN) at The University of Queensland, Australia” has financially supported this research. The authors also acknowledge the facilities, the scientific and technical assistance of “Australian National Fabrication Facility” (ANFF) at The University of Queensland. The first author gratefully appreciates the University of Queensland international (UQI) scholarship and candidature travel award (CTA).

Supplementary material

10847_2019_905_MOESM1_ESM.docx (147 kb)
Supplementary material 1 (DOCX 147 kb)

References

  1. 1.
    Dabral, S., Engel, J., Mottweiler, J., Spoehrle, S.S.M., Lahive, C.W., Bolm, C.: Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate. Green Chem. 20(1), 170–182 (2018)CrossRefGoogle Scholar
  2. 2.
    Lancefield, C.S., Panovic, I., Deuss, P.J., Barta, K., Westwood, N.J.: Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem. 19(1), 202–214 (2017)CrossRefGoogle Scholar
  3. 3.
    Wang, M., Li, L.H., Lu, J.M., Li, H.J., Zhang, X.C., Liu, H.F., Luo, N.C., Wang, F.: Acid promoted C–C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst. Green Chem. 19(3), 702–706 (2017)CrossRefGoogle Scholar
  4. 4.
    Koelewijn, S.-F., Van Den Bosch, S., Renders, T., Schutyser, W., Lagrain, B., Smet, M., Thomas, J., Dehaen, W., Van Puyvelde, P., Witters, H., Sels, B.F.: Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chem. 19(11), 2561–2570 (2017)CrossRefGoogle Scholar
  5. 5.
    Paysepar, H., Rao, K.T.V., Yuan, Z., Nazari, L., Shui, H., Xu, C.: Zeolite catalysts screening for production of phenolic bio-oils with high contents of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis. Fuel Process. Technol. 178, 362–370 (2018)CrossRefGoogle Scholar
  6. 6.
    Wu, Y., Wu, S., Zhang, H., Xiao, R.: Cellulose-lignin interactions during catalytic pyrolysis with different zeolite catalysts. Fuel Process. Technol. 179, 436–442 (2018)CrossRefGoogle Scholar
  7. 7.
    Lui, M.Y., Lokare, K.S., Hemming, E., Stanley, J.N.G., Perosa, A., Selva, M., Masters, A.F., Maschmeyer, T.: Microwave-assisted methylation of dihydroxybenzene derivatives with dimethyl carbonate. RSC Adv. 6(63), 58443–58451 (2016)CrossRefGoogle Scholar
  8. 8.
    Santos, J.H.P.M., Martins, M., Silvestre, A.J.D., Coutinho, J.A.P., Ventura, S.P.M.: Fractionation of phenolic compounds from lignin depolymerisation using polymeric aqueous biphasic systems with ionic surfactants as electrolytes. Green Chem. 18(20), 5569–5579 (2016)CrossRefGoogle Scholar
  9. 9.
    Díaz-Urrutia, C., Chen, W.-C., Crites, C.-O., Daccache, J., Korobkov, I., Baker, R.T.: Towards lignin valorisation: comparing homogeneous catalysts for the aerobic oxidation and depolymerisation of organosolv lignin. RSC Adv. 5(86), 70502–70511 (2015)CrossRefGoogle Scholar
  10. 10.
    Yang, H., Norinaga, K., Li, J., Zhu, W., Wang, H.: Effects of HZSM-5 on volatile products obtained from the fast pyrolysis of lignin and model compounds. Fuel Process. Technol. 181, 207–214 (2018)CrossRefGoogle Scholar
  11. 11.
    Agarwal, A., Rana, M., Park, J.-H.: Advancement in technologies for the depolymerization of lignin. Fuel Process. Technol. 181, 115–132 (2018)CrossRefGoogle Scholar
  12. 12.
    Li, H., Fang, Z., Smith, R.L., Yang, S.: Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog. Energy Combust. Sci. 55, 98–194 (2016)CrossRefGoogle Scholar
  13. 13.
    Schneider, L., Dong, Y., Haverinen, J., Jaakkola, M., Lassi, U.: Efficiency of acetic acid and formic acid as a catalyst in catalytical and mechanocatalytical pretreatment of barley straw. Biomass Bioenergy 91, 134–142 (2016)CrossRefGoogle Scholar
  14. 14.
    Deng, W., Zhang, H., Wu, X., Li, R., Zhang, Q., Wang, Y.: Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2 -supported Pd nanoparticles. Green Chem. 17(11), 5009–5018 (2015)CrossRefGoogle Scholar
  15. 15.
    Byambajav, E., Paysepar, H., Nazari, L., Xu, C.: Co-pyrolysis of lignin and low rank coal for the production of aromatic oils. Fuel Process. Technol. 181, 1–7 (2018)CrossRefGoogle Scholar
  16. 16.
    Ma, Z., Wang, J., Zhou, H., Zhang, Y., Yang, Y., Liu, X., Ye, J., Chen, D., Wang, S.: Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities. Fuel Process. Technol. 181, 142–156 (2018)CrossRefGoogle Scholar
  17. 17.
    Cui, K., Yang, L., Ma, Z., Yan, F., Wu, K., Sang, Y., Chen, H., Li, Y.: Selective conversion of guaiacol to substituted alkylphenols in supercritical ethanol over MoO3. Appl. Catal. B Environ. 219, 592–602 (2017)CrossRefGoogle Scholar
  18. 18.
    Sturgeon, M.R., O’Brien, M.H., Ciesielski, P.N., Katahira, R., Kruger, J.S., Chmely, S.C., Hamlin, J., Lawrence, K., Hunsinger, G.B., Foust, T.D., Baldwin, R.M., Biddy, M.J., Beckham, G.T.: Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chem. 16(2), 824–835 (2014)CrossRefGoogle Scholar
  19. 19.
    Zhang, J., Lu, G., Cai, C.: Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd-Ni BMNPs. Green Chem. 2, 4538–4543 (2017)CrossRefGoogle Scholar
  20. 20.
    da Costa Sousa, L., Jin, M., Chundawat, S.P.S., Bokade, V., Tang, X., Azarpira, A., Lu, F., Avci, U., Humpula, J., Uppugundla, N., Gunawan, C., Pattathil, S., Cheh, A.M., Kothari, N., Kumar, R., Ralph, J., Hahn, M.G., Wyman, C.E., Singh, S., Simmons, B.A., Dale, B.E., Balan, V.: Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ. Sci. 9(4), 1215–1223 (2016)CrossRefGoogle Scholar
  21. 21.
    Chen, W., McClelland, D.J., Azarpira, A., Ralph, J., Luo, Z., Huber, G.W.: Low temperature hydrogenation of pyrolytic lignin over Ru/TiO 2: 2D HSQC and 13 C NMR study of reactants and products. Green Chem. 18(1), 271–281 (2016)CrossRefGoogle Scholar
  22. 22.
    Behling, R., Valange, S., Chatel, G.: Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem. 18(7), 1839–1854 (2016)CrossRefGoogle Scholar
  23. 23.
    Dayton, D.C., Hlebak, J., Carpenter, J.R., Wang, K., Mante, O.D., Peters, J.E.: Biomass hydropyrolysis in a fluidized bed reactor. Energy Fuels 30(6), 4879–4887 (2016)CrossRefGoogle Scholar
  24. 24.
    Custodis, V.B.F., Hemberger, P., Ma, Z., Van Bokhoven, J.A.: Mechanism of fast pyrolysis of lignin: studying model compounds. J. Phys. Chem. B 118(29), 8524–8531 (2014)CrossRefGoogle Scholar
  25. 25.
    Wang, S., Dai, G., Yang, H., Luo, Z.: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust. Sci. 62, 33–86 (2017)CrossRefGoogle Scholar
  26. 26.
    He, T., Zhang, Y., Zhu, Y., Wen, W., Pan, Y., Wu, J., Wu, J.: Pyrolysis mechanism study of lignin model compounds by synchrotron vacuum ultraviolet photoionization mass spectrometry. Energy Fuels 30(3), 2204–2208 (2016)CrossRefGoogle Scholar
  27. 27.
    Jarvis, M.W., Daily, J.W., Carstensen, H.H., Dean, A.M., Sharma, S., Dayton, D.C., Robichaud, D.J., Nimlos, M.R.: Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether. J. Phys. Chem. A 115(4), 428–438 (2011)CrossRefGoogle Scholar
  28. 28.
    Mukkamala, S., Wheeler, M.C., Van Heiningen, A.R.P., Desisto, W.J.: Formate-assisted fast pyrolysis of lignin. Energy Fuels 26(2), 1380–1384 (2012)CrossRefGoogle Scholar
  29. 29.
    Zhou, S., Brown, R.C., Bai, X.: The use of calcium hydroxide pretreatment to overcome agglomeration of technical lignin during fast pyrolysis. Green Chem. 17(10), 4748–4759 (2015)CrossRefGoogle Scholar
  30. 30.
    Tarves, P.C., Mullen, C.A., Strahan, G.D., Boateng, A.A.: Depolymerization of lignin via co-pyrolysis with 1,4-butanediol in a microwave reactor. ACS Sustain. Chem. Eng. 5(1), 988–994 (2017)CrossRefGoogle Scholar
  31. 31.
    Fortin, M., Mohadjer Beromi, M., Lai, A., Tarves, P.C., Mullen, C.A., Boateng, A.A., West, N.M.: Structural analysis of pyrolytic lignins isolated from switchgrass fast-pyrolysis oil. Energy Fuels 29(12), 8017–8026 (2015)CrossRefGoogle Scholar
  32. 32.
    Kan, T., Strezov, V., Evans, T.J.: Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57, 1126–1140 (2016)CrossRefGoogle Scholar
  33. 33.
    Beste, A., Buchanan, A.C.: Kinetic analysis of the phenyl-shift reaction in??-O-4 lignin model compounds: a computational study. J. Org. Chem. 76(7), 2195–2203 (2011)CrossRefGoogle Scholar
  34. 34.
    Beste, A., Buchanan, A.C.: Computational study of bond dissociation enthalpies for lignin model compounds. substituent effects in phenethyl phenyl ethers. J. Org. Chem. 74(7), 2837–2841 (2009)CrossRefGoogle Scholar
  35. 35.
    Song, Q., Wang, F., Xu, J.: Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem. Commun. 48(56), 7019 (2012)CrossRefGoogle Scholar
  36. 36.
    Mottweiler, J., Rinesch, T., Besson, C., Buendia, J., Bolm, C.: Iron-catalysed oxidative cleavage of lignin and β-O-4 lignin model compounds with peroxides in DMSO. Green Chem. 17(11), 5001–5008 (2015)CrossRefGoogle Scholar
  37. 37.
    Kleine, T., Buendia, J., Bolm, C.: Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium. Green Chem. 15(1), 160–166 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Australian Institute for Bioengineering and Nanotechnology - AIBNThe University of QueenslandBrisbaneAustralia
  2. 2.Centre for Tropical Crops & Bio-Commodities – Queensland University of Technology (QUT)BrisbaneAustralia
  3. 3.IROAST, Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan

Personalised recommendations