Self-sorting processes in a stimuli-responsive supramolecular systems based on cucurbituril, cyclodextrin and bisstyryl guests

  • Olga A. FedorovaEmail author
  • Ekaterina Y. Chernikova
  • Sergey V. Tkachenko
  • Alexander I. Grachev
  • Ivan A. Godovikov
  • Yuri V. Fedorov
Original Article


We report a four-component mixture comprising bisstyryl dyes, HP-β-CD and CB[7] that undergoes self-sorting in aqueous solution based on ion–dipole, electrostatic, charge–transfer interactions, as well as the hydrophobic effect. The formation of 1:1 and 1:2 complexes between the bisstyryl guests and HP-β-CD, CB[7] has been confirmed by optical and NMR spectroscopy as well as ESI-MS data. The studied supramolecular systems are stimuli responsive. Thus, protonation of bisstyryl dye based on pyridine heterocyclic residue leads to the destruction of its complexes with HP-β-CD. Whereas, complex of the bisstyryl dye with CB[7] based on N-methylpyridinium moiety can be replaced by Ba2+ cation.

Graphical abstract

The work demonstrates that HP-β-CD and CB[7] are molecular containers suitable for the creation of stimuli-responsive and self-sorting systems.


Self-sorting Stimuli responsive systems Bisstyryl dye Cyclodextrin Cucurbituril Complex formation 



This study was supported by a grant from the Russian Science Foundation (Project No. 19-43-04127). The contribution of Center for molecule composition studies of INEOS RAS is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10847_2019_900_MOESM1_ESM.docx (6 mb)
Supplementary material 1 (DOCX 6180 KB)


  1. 1.
    Klajn, R., Stoddart, J.F., Grzybowski, B.A.: Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem. Soc. Rev. 39, 2203–2237 (2010)CrossRefGoogle Scholar
  2. 2.
    Coskun, A., Banaszak, M., Astumian, R.D., Stoddart, J.F., Grzybowski, B.A.: Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012)CrossRefGoogle Scholar
  3. 3.
    Hu, Q.-D., Tang, G.-P., Chu, P.K.: Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: from design to applications. Acc. Chem. Res. 47, 2017–2025 (2014)CrossRefGoogle Scholar
  4. 4.
    Guo, S.-S., Liu, Y.: Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc. Chem. Res. 47, 1925–1934 (2014)CrossRefGoogle Scholar
  5. 5.
    Kaifer, A.E.: Toward reversible control of cucurbit[n]uril complexes. Acc. Chem. Res. 47, 2160–2167 (2014)CrossRefGoogle Scholar
  6. 6.
    Nallya, R., Scherma, O.A., Isaacs, L.: Polymer deaggregation and assembly controlled by a double cavity cucurbituril. Supramol. Chem. 22, 683–690 (2010)CrossRefGoogle Scholar
  7. 7.
    Isaacs, L.: Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc. Chem. Res. 47, 2052–2062 (2014)CrossRefGoogle Scholar
  8. 8.
    Leung, K.C.-F., Chak, C.-P., Lo, C.-M., Wong, W.-Y., Xuan, S., Cheng, C.H.K.: pH-controllable supramolecular systems. Chem. Asian J. 4, 364–381 (2009)CrossRefGoogle Scholar
  9. 9.
    Fang, L., Hmadeh, M., Wu, J., Olson, M.A., Spruell, J.M., Trabolsi, A., Yang, Y.-W., Elhabiri, M., Albrecht-Gary, A.-M., Stoddart, J.F.: Acid–base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131, 7126–7134 (2009)CrossRefGoogle Scholar
  10. 10.
    Park, C., Oh, K., Lee, S.C., Kim, C.: Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. Angew. Chem. 119, 1477 – 1479 (2007)CrossRefGoogle Scholar
  11. 11.
    Joung, Y.K., Ooya, T., Yamaguchi, M., Yui, N.: Modulating rheological properties of supramolecular networks by pH-responsive double-axle intrusion into γ-cyclodextrin. Adv. Mater. 19, 396–400 (2007)CrossRefGoogle Scholar
  12. 12.
    Ikeda, M., Ochi, R., Kurita, Y., Pochan, D.J., Hamachi, I.: Heat-induced morphological transformation of supramolecular nanostructures by Retro-Diels–Alder reaction. Chem. Eur. J. 18, 13091–13096 (2012)CrossRefGoogle Scholar
  13. 13.
    Wang, J., Gao, P., Ye, L., Zhang, A., Feng, Z.: Dual thermo-responsive polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated with self-assemblies of Br end-capped Pluronic F127 with β-cyclodextrins. Polym. Chem. 2, 931 – 940 (2011)CrossRefGoogle Scholar
  14. 14.
    Yagai, S., Kitamura, A.: Recent advances in photoresponsive supramolecular self-assemblies. Chem. Soc. Rev. 37, 1520–1529 (2008)CrossRefGoogle Scholar
  15. 15.
    Saha, S., Stoddart, J.F.: Photo-driven molecular devices. Chem. Soc. Rev. 36, 77–92 (2007)CrossRefGoogle Scholar
  16. 16.
    Saha, S., Johansson, E., Flood, A.H., Tseng, H.R., Zink, J.I., Stoddart, J.F.: A photoactive molecular triad as a nanoscale power supply for a supramolecular machine. Chem. Eur. J. 11, 6846–6858 (2005)CrossRefGoogle Scholar
  17. 17.
    Zhu, L., Yan, H., Wang, X.-J., Zhao, Y.: Light-controllable cucurbit[7]uril-based molecular shuttle. J. Org. Chem. 77, 10168–10175 (2012)CrossRefGoogle Scholar
  18. 18.
    Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A.: Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511–516 (2011)CrossRefGoogle Scholar
  19. 19.
    Guo, D.-S., Chen, S., Qian, H., Zhang, H.-Q., Liu, Y.: Electrochemical stimulus-responsive supramolecular polymer based on sulfonatocalixarene and viologen dimers. Chem. Commun. 46, 2620–2622 (2010)CrossRefGoogle Scholar
  20. 20.
    Saha, S., Flood, A.H., Stoddart, J.F., Impellizzeri, S., Silvi, S., Venturi, M., Credi, A.: A redox-driven multicomponent molecular shuttle. J. Am. Chem. Soc. 129, 12159–12171 (2007)CrossRefGoogle Scholar
  21. 21.
    Rowan, S.J., Hamilton, D.G., Brady, P.A., Sanders, J.K.M.: Automated recognition, sorting, and covalent self-assembly by predisposed building blocks in a mixture. J. Am. Chem. Soc. 119, 2578–2579 (1997)CrossRefGoogle Scholar
  22. 22.
    Jolliffe, K.A., Timmerman, P., Reinhoudt, D.N.: Noncovalent assembly of a fifteen-component hydrogen-bonded nanostructure. Angew. Chem. Int. Ed. Engl. 38, 933–937 (1999)CrossRefGoogle Scholar
  23. 23.
    Wu, A., Chakraborty, A., Fettinger, J.C., Flowers, R.A. II, Isaacs, L.: Molecular clips that undergo heterochiral aggregation and self-sorting. Angew. Chem. Int. Ed. 41, 4028–4031 (2002)CrossRefGoogle Scholar
  24. 24.
    Caulder, D.L., Raymond, K.N.: Superamolecular self-recognition and self-assembly in gallium(III) catecholamide triple helices. Angew. Chem. Int. Ed. Engl. 36, 1440–1442 (1997)CrossRefGoogle Scholar
  25. 25.
    Ding, Z.-J., Zhang, H.-Y., Wang, L.-H., Ding, F., Liu, Y.: A heterowheel [3]pseudorotaxane by integrating β-cyclodextrin and cucurbit[8]uril inclusion complexes. Org. Lett. 3, 856–859 (2011)CrossRefGoogle Scholar
  26. 26.
    Li, L., Zhang, H.-Y., Zhao, J., Li, N., Liu, Y.: Self-sorting of four organic molecules into a heterowheel polypseudorotaxane. Chem. Eur. J. 19, 6498–6506 (2013)CrossRefGoogle Scholar
  27. 27.
    Wu, A., Isaacs, L.: Self-sorting: the exception or the rule? J. Am. Chem. Soc. 125, 4831–4835 (2003)CrossRefGoogle Scholar
  28. 28.
    Mukhopadhyay, P., Wu, A., Isaacs, L.: Social self-sorting in aqueous solution. J. Org. Chem. 69, 6157–6164 (2004)CrossRefGoogle Scholar
  29. 29.
    Taylor, P.N., Anderson, H.L.: Cooperative self-assembly of double-strand conjugated porphyrin ladders. J. Am. Chem. Soc. 121, 11538–11545 (1999)CrossRefGoogle Scholar
  30. 30.
    Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)CrossRefGoogle Scholar
  31. 31.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  32. 32.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  33. 33.
    Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)CrossRefGoogle Scholar
  34. 34.
    Liu, S., Zavalij, P.Y., Isaacs, L.: Cucurbit[10]uril. J. Am. Chem. Soc. 127, 16798–16799 (2005)CrossRefGoogle Scholar
  35. 35.
    Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)CrossRefGoogle Scholar
  36. 36.
    Buschmann, H.-J., Cleve, E., Schollmeyer, E.: Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorg. Chim. Acta 193, 93–97 (1992)CrossRefGoogle Scholar
  37. 37.
    Jeon, Y.-M., Kim, J., Whang, D., Kim, K.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996)CrossRefGoogle Scholar
  38. 38.
    Marquez, C., Hudgins, R.R., Nau, W.M.: Mechanism of host–guest complexation by cucurbituril. J. Am. Chem. Soc. 126, 5806–5816 (2004)CrossRefGoogle Scholar
  39. 39.
    Buschmann, H.-J., Cleve, E., Jansen, K., Schollmeyer, E.: Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution. Anal. Chim. Acta 437, 157–163 (2001)CrossRefGoogle Scholar
  40. 40.
    Liu, J.-X., Hu, Y.-F., Lin, R.-L., Sun, W.-Q., Liu, X.-H., Yao, W.-R.: Anion channel structure through packing of cucurbit[5]uril-Pb2+ or cucurbit[5]uril-Hg2+ complexes. J. Coord. Chem. 63, 1369–1378 (2010)CrossRefGoogle Scholar
  41. 41.
    Zhang, X.X., Krakowiak, K.E., Xue, G., Bradshaw, J.S., Izatt, R.M.: A highly selective compound for lead: complexation studies of decamethylcucurbit[5]uril with metal ions. Ind. Eng. Chem. Res. 39, 3516–3520 (2000)CrossRefGoogle Scholar
  42. 42.
    Tang, H., Fuentealba, D., Ko, Y.H., Selvapalam, N., Kim, K., Bohne, C.: Guest binding dynamics with cucurbit[7]uril in the presence of cations. J. Am. Chem. Soc. 133, 20623–20633 (2011)CrossRefGoogle Scholar
  43. 43.
    Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M., Takaha, T.: Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998)CrossRefGoogle Scholar
  44. 44.
    Lebedeva, A.Y., Fedorova, O.A., Tsvetkov, V.B., Grinberg, V.Y., Grinberg, N.V., Burova, T.V., Dubovik, A.S., Babievsky, K.K., Fedorov, Y.V.: Novel 18-crown-6-ether containing mono- and bisstyryl dyes derived from pyridine moiety as fluorescent dyes for non-covalent interaction with DNA. Dyes Pigments 157, 80–92 (2018)CrossRefGoogle Scholar
  45. 45.
    Ghosh, I., Nau, W.M.: The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Adv. Drug Deliv. Rev. 64, 764–783 (2012)CrossRefGoogle Scholar
  46. 46.
    Barooah, N., Mohanty, J., Pal, H., Bhasikuttan, A.C.: Cucurbituril-induced supramolecular pKa shift in fluorescent dyes and its prospective applications. Proc. Natl. Acad. Sci. India A 84, 1–17 (2014)Google Scholar
  47. 47.
    Dsouza, R.N., Pischel, U., Nau, W.M.: Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011)CrossRefGoogle Scholar
  48. 48.
    Chernikova, E.Y., Tkachenko, S.V., Fedorova, O.A., Peregudov, A.S., Godovikov, I.A., Shepel, N.E., Minkovska, S., Kurutos, A., Gadjev, N., Deligeorgiev, T.G., Fedorov, Y.V.: Multistep assembling via intermolecular interaction between (bis) styryl dye and cucurbit[7]uril: spectral effects and host sliding motion. Dyes Pigments 131, 206–214 (2016)CrossRefGoogle Scholar
  49. 49.
    Fedorova, O.A., Chernikova, E.Y., Fedorov, Y.V., Gulakova, E.N., Peregudov, A.S., Lyssenko, K.A., Jonusauskas, G., Isaacs, L.: Cucurbit[7]uril complexes of crown-ether derived styryl and (bis)styryl dyes. J. Phys. Chem. B 113, 10149–10158 (2009)CrossRefGoogle Scholar
  50. 50.
    Wittenberg, J.B., Zavalij, P.Y., Isaacs, L.: Supramolecular ladders from dimeric cucurbit[6]uril. Angew. Chem. Int. Ed. 52, 3690–3694 (2013)CrossRefGoogle Scholar
  51. 51.
    Takashima, Y., Yuting, Y., Otsubo, M., Yamaguchi, H., Harada, A.: Supramolecular hydrogels formed from poly(viologen) cross-linked with cyclodextrin dimers and their physical properties. Beilstein J. Org. Chem. 8, 1594–1600 (2012)CrossRefGoogle Scholar
  52. 52.
    Schneider, H.-J., Hacket, F., Rudiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Olga A. Fedorova
    • 1
    Email author
  • Ekaterina Y. Chernikova
    • 1
  • Sergey V. Tkachenko
    • 2
  • Alexander I. Grachev
    • 1
  • Ivan A. Godovikov
    • 3
  • Yuri V. Fedorov
    • 1
  1. 1.Laboratory of Photoactive Supramolecular SystemsA.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)MoscowRussia
  2. 2.Chair of Chemistry and Technology of Biomedical PharmaceuticalsD. Mendeleyev University of Chemical Technology of RussiaMoscowRussia
  3. 3.Laboratory for Nuclear Magnetic ResonanceA.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)MoscowRussia

Personalised recommendations