Advertisement

QCM sensors coated with calix[4]arenes bearing sensitive chiral moieties for chiral discrimination of 1-phenylethylamine enantiomers

  • Egemen Ozcelik
  • Farabi Temel
  • Serkan Erdemir
  • Begum Tabakci
  • Mustafa TabakciEmail author
Original Article
  • 95 Downloads

Abstract

This article describes the enantiomeric discrimination properties of new chiral calix[4]arene derivatives bearing (S)-/(R)-1-phenylethylamine moieties (5a and 5b, respectively) towards the 1-phenylethylamine enantiomers on QCM surface. Initial experiments demonstrated that the 5b coated QCM sensor was the most effective sensing material for enantiomeric discrimination of (R)-/(S)-1-phenylethylamine by exhibiting much more sensing ability towards (R)-enantiomer than (S)-enantiomer. Sensitivity, detection limit and time constant of the 5b coated QCM sensor has been were calculated as 0.082 Hz/µM, 2.7 µM, and 319.2 s, respectively. Additionally, effects of calixarene content and different coating technique on enantiomeric discrimination, and Langmuir and Freundlich isotherms of the sensing results also were studied. As a result, it has been demonstrated that the coating of QCM sensor with a chiral calix[4]arene (5b) having (S)-1-phenylethylamine moieties provides substantially enantiomeric discrimination of 1-phenylethylamine enantiomers.

Keywords

1-Phenylethylamine Organic coatings Calixarene Enantiomeric discrimination Quartz crystal microbalance sensor 

Notes

Acknowledgements

We thank the Technical Research Council of Turkey (TUBITAK—Grant No. 115Z249) and the Research Foundation of the Selçuk University (SUBAP-Grant No. 16401003), Konya, Turkey and for financial support of this work produced from Egemen Ozcelik’s M.Sc. Thesis.

Supplementary material

10847_2019_892_MOESM1_ESM.docx (975 kb)
Supplementary material 1 (DOCX 974 KB)

References

  1. 1.
    Zhou, Y., Ren, Y., Zhang, L., You, L., Yuan, Y., Anslyn, E.V.: Dynamic covalent binding and chirality sensing of mono secondary amines with a metal-templated assembly. Tetrahedron 71(21), 3515–3521 (2015)CrossRefGoogle Scholar
  2. 2.
    Kodamatani, H., Iwaya, Y., Saga, M., Saito, K., Fujioka, T., Yamazaki, S., Kanzaki, R., Tomiyasu, T.: Ultra-sensitive HPLC-photochemical reaction-luminol chemiluminescence method for the measurement of secondary amines after nitrosation. Anal. Chim. Acta 952, 50–58 (2017)CrossRefGoogle Scholar
  3. 3.
    Jennings, K., Diamond, D.: Enantioselective molecular sensing of aromatic amines using tetra-(S)-di-2-naphthylprolinol calix[4]arene. Analyst 126(7), 1063–1067 (2001)CrossRefGoogle Scholar
  4. 4.
    Stringham, R.W., Ye, Y.K.: Chiral separation of amines by high-performance liquid chromatography using polysaccharide stationary phases and acidic additives. J. Chromatogr. A 1101(1), 86–93 (2006)CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Woods, R.M., Breitbach, Z.S., Armstrong, D.W.: 1,3-Dimethylamylamine (DMAA) in supplements and geranium products: natural or synthetic? Drug Test. Anal. 4(12), 986–990 (2012)CrossRefGoogle Scholar
  6. 6.
    Tabakci, M., Tabakci, B., Yilmaz, M.: Design and synthesis of new chiral calix[4]arenes as liquid phase extraction agents for α-amino acid methylesters and chiral α-amines. J. Incl. Phenom. Macrocycl. Chem. 53(1–2), 51–56 (2005)CrossRefGoogle Scholar
  7. 7.
    Huang, Z., Yu, S., Zhao, X., Wen, K., Xu, Y., Yu, X., Xu, Y., Pu, L.: A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines. Chemistry 20(50), 16458–16461 (2014)CrossRefGoogle Scholar
  8. 8.
    Mishra, S.K., Chaudhari, S.R., Lakshmipriya, A., Pal, I., Lokesh, N., Suryaprakash, N.: Novel synthetic as well as natural auxiliaries with a blend of NMR methodological developments for chiral analysis in isotropic media. In Annual Reports on NMR Spectroscopy, Vol. 91, pp. 143–292. Academic Press, Cambridge (2017)Google Scholar
  9. 9.
    Guo, L., Wang, D., Xu, Y., Qiu, B., Lin, Z., Dai, H., Yang, H.H., Chen, G.: Discrimination of enantiomers based on LSPR biosensors fabricated with weak enantioselective and nonselective receptors. Biosens. Bioelectron. 47, 199–205 (2013)CrossRefGoogle Scholar
  10. 10.
    Kertész, J., Huszthy, P., Kormos, A., Bertha, F., Horváth, V., Horvai, G.: Synthesis of new optically active acridino-18-crown-6 ligands and studies of their potentiometric selectivity toward the enantiomers of protonated 1-phenylethylamine and metal ions. Tetrahedron 20(24), 2795–2801 (2009)CrossRefGoogle Scholar
  11. 11.
    Wang, L., Zhang, Y., Wu, A., Wei, G.: Designed graphene-peptide nanocomposites for biosensor applications: a review. Anal. Chim. Acta 985, 24–40 (2017)Google Scholar
  12. 12.
    March, C., Garcia, J.V., Sanchez, A., Arnau, A., Jimenez, Y., Garcia, P., Manclus, J.J., Montoya, A.: High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors. Biosens. Bioelectron. 65, 1–8 (2015)CrossRefGoogle Scholar
  13. 13.
    Montmeat, P., Veignal, F., Methivier, C., Pradier, C.M., Hairault, L.: Study of calixarenes thin films as chemical sensors for the detection of explosives. Appl. Surf. Sci. 292, 137–141 (2014)CrossRefGoogle Scholar
  14. 14.
    Pei, Z., Saint-Guirons, J., Kack, C., Ingemarsson, B., Aastrup, T.: Real-time analysis of the carbohydrates on cell surfaces using a QCM biosensor: a lectin-based approach. Biosens. Bioelectron. 35(1), 200–205 (2012)CrossRefGoogle Scholar
  15. 15.
    Karaseva, N., Ermolaeva, T., Mizaikoff, B.: Piezoelectric sensors using molecularly imprinted nanospheres for the detection of antibiotics. Sens. Actuators B 225, 199–208 (2016)CrossRefGoogle Scholar
  16. 16.
    Jearanaikoon, P., Prakrankamanant, P., Leelayuwat, C., Wanram, S., Limpaiboon, T., Promptmas, C.: The evaluation of loop-mediated isothermal amplification-quartz crystal microbalance (LAMP-QCM) biosensor as a real-time measurement of HPV16 DNA. J. Virol. Methods 229, 8–11 (2016)CrossRefGoogle Scholar
  17. 17.
    Hao, R.Z., Song, H.B., Zuo, G.M., Yang, R.F., Wei, H.P., Wang, D.B., Cui, Z.Q., Zhang, Z., Cheng, Z.X., Zhang, X.E.: DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection. Biosens. Bioelectron. 26(8), 3398–3404 (2011)CrossRefGoogle Scholar
  18. 18.
    Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 155(2), 206–222 (1959)CrossRefGoogle Scholar
  19. 19.
    Tabakci, M.: Immobilization of calix[6]arene bearing carboxylic acid and amide groups on aminopropyl silica gel and its sorption properties for Cr(VI). J. Incl. Phenom. Macrocycl. Chem. 61(1), 53–60 (2008)CrossRefGoogle Scholar
  20. 20.
    Temel, F., Tabakci, M.: Calix[4]arene coated QCM sensors for detection of VOC emissions: methylene chloride sensing studies. Talanta 153, 221–227 (2016)CrossRefGoogle Scholar
  21. 21.
    Temel, F., Ozcelik, E., Ture, A.G., Tabakci, M.: Sensing abilities of functionalized calix[4]arene coated QCM sensors towards volatile organic compounds in aqueous media. Appl. Surf. Sci. 412, 238–251 (2017)CrossRefGoogle Scholar
  22. 22.
    Kostyukevych, K.V., Khristosenko, R.V., Pavluchenko, A.S., Vakhula, A.A., Kazantseva, Z.I., Koshets, I.A., Shirshov, Y.M.: A nanostructural model of ethanol adsorption in thin calixarene films. Sens. Actuators B 223, 470–480 (2016)CrossRefGoogle Scholar
  23. 23.
    Juaristi, E., León-Romo, J.L., Reyes, A., Escalante, J.: Recent applications of α-phenylethylamine (α-PEA) in the preparation of enantiopure compounds. Part 3: α-PEA as chiral auxiliary. Part 4: α-PEA as chiral reagent in the stereodifferentiation of prochiral substrates[1]. Tetrahedron 10(13), 2441–2495 (1999)CrossRefGoogle Scholar
  24. 24.
    Kuang, R., Zheng, L., Chi, Y., Shi, J., Chen, X., Zhang, C.: Highly efficient electrochemical recognition and quantification of amine enantiomers based on a guest-free homochiral MOF. RSC Adv. 7(19), 11701–11706 (2017)CrossRefGoogle Scholar
  25. 25.
    Breuer, M., Ditrich, K., Habicher, T., Hauer, B., Keßeler, M., Stürmer, R., Zelinski, T.: Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43(7), 788–824 (2004)CrossRefGoogle Scholar
  26. 26.
    Su, W.C., Zhang, W.G., Zhang, S., Fan, J., Yin, X., Luo, M.L., Ng, S.C.: A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor. Biosens. Bioelectron. 25(2), 488–492 (2009)CrossRefGoogle Scholar
  27. 27.
    Long, G.L., Winefordner, J.D.: Limit of detection a closer look at the IUPAC definition. Anal. Chem. 55(07), 712A–724A (1983)Google Scholar
  28. 28.
    Koshets, I.A., Kazantseva, Z.I., Belyaev, A.E., Kalchenko, V.I.: Sensitivity of resorcinarene films towards aliphatic alcohols. Sens. Actuators B 140(1), 104–108 (2009)CrossRefGoogle Scholar
  29. 29.
    Fu, Y., Finklea, H.O.: Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers. Anal. Chem. 75(20), 5387–5393 (2003)CrossRefGoogle Scholar
  30. 30.
    Li, Z.-T., Ji, G.-Z., Zhao, C.-X., Yuan, S.-D., Ding, H., Huang, C., Du, A.-L., Wei, M.: Self-assembling calix[4]arene [2]catenanes. Preorganization, conformation, selectivity, and efficiency. J. Org. Chem. 64(10), 3572–3584 (1999)CrossRefGoogle Scholar
  31. 31.
    Gutsche, C.D., Dhawan, B., No, K.H., Muthukrishnan, R.: Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J. Am. Chem. Soc. 103(13), 3782–3792 (1981)CrossRefGoogle Scholar
  32. 32.
    Chawla, H.M., Pant, N., Srivastava, B., Upreti, S.: Convenient direct synthesis of bisformylated calix[4]arenes via ipso substitution. Org. Lett. 8(11), 2237–2240 (2006)CrossRefGoogle Scholar
  33. 33.
    Nakanishi, T., Yamakawa, N., Asahi, T., Shibata, N., Ohtani, B., Osaka, T.: Chiral discrimination between thalidomide enantiomers using a solid surface with two-dimensional chirality. Chirality 16, S36–S39 (2004)CrossRefGoogle Scholar
  34. 34.
    Grate, J.W., Snow, A., Ballantine, D.S., Wohltjen, H., Abraham, M.H., McGill, R.A., Sasson, P.: Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients. Anal. Chem. 60(9), 869–875 (1988)CrossRefGoogle Scholar
  35. 35.
    Upadhyay, S.P., Pissurlenkar, R.R.S., Coutinho, E.C., Karnik, A.V.: Furo-fused BINOL based crown as a fluorescent chiral sensor for enantioselective recognition of phenylethylamine and ethyl ester of valine. J. Org. Chem. 72(15), 5709–5714 (2007)CrossRefGoogle Scholar
  36. 36.
    Grady, T., Harris, S.J., Smyth, M.R., Diamond, D., Hailey, P.: Determination of the enantiomeric composition of chiral amines based on the quenching of the fluorescence of a chiral calixarene. Anal. Chem. 68(21), 3775–3782 (1996)CrossRefGoogle Scholar
  37. 37.
    Yang, Y., Pei, X.-L., Wang, Q.-M.: Postclustering dynamic covalent modification for chirality control and chiral sensing. J. Am. Chem. Soc. 135(43), 16184–16191 (2013)CrossRefGoogle Scholar
  38. 38.
    Charrier, J., Brandily, M.-L., Lhermite, H., Michel, K., Bureau, B., Verger, F., Nazabal, V.: Evanescent wave optical micro-sensor based on chalcogenide glass. Sens. Actuators B 173, 468–476 (2012)CrossRefGoogle Scholar
  39. 39.
    He, H., Uray, G., Wolfbeis, O.S.: Enantioselective optodes. Anal. Chim. Acta 246(2), 251–257 (1991)CrossRefGoogle Scholar
  40. 40.
    Gazzani, G., Stoppini, G., Gandini, C., Bettero, A.: Reversed-phase high-performance liquid chromatographic and derivative UV spectrophotometric determination of α-phenylethylamine in phosphomycin. J. Chromatogr. A 609(1), 391–394 (1992)CrossRefGoogle Scholar
  41. 41.
    Weber, W.J.: Physicochemical Processes for Water Quality Control. Wiley, New York (1972)Google Scholar
  42. 42.
    Hamdaoui, O.: Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns. J. Hazard. Mater. 138(2), 293–303 (2006)CrossRefGoogle Scholar
  43. 43.
    Rao, M., Parwate, A.V., Bhole, A.G.: Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manag. 22(7), 821–830 (2002)CrossRefGoogle Scholar
  44. 44.
    Bayramoglu, G., Ozalp, C., Oztekin, M., Guler, U., Salih, B., Arica, M.Y.: Design of an aptamer-based magnetic adsorbent and biosensor systems for selective and sensitive separation and detection of thrombin. Talanta 191, 59–66 (2019)CrossRefGoogle Scholar
  45. 45.
    Yuan, Y., Lee, T.R.: Contact Angle and Wetting Properties. In: Bracco, G., Holst, B. (eds.) Surface Science Techniques, pp. 3–34. Springer, Berlin (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019
corrected publication 2019

Authors and Affiliations

  • Egemen Ozcelik
    • 1
    • 2
  • Farabi Temel
    • 1
    • 2
  • Serkan Erdemir
    • 3
  • Begum Tabakci
    • 3
  • Mustafa Tabakci
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringKonya Technical UniversityKonyaTurkey
  2. 2.Department of Chemical EngineeringSelçuk UniversityKonyaTurkey
  3. 3.Department of ChemistrySelçuk UniversityKonyaTurkey

Personalised recommendations