Advertisement

An investigation into the possibility of molecular inclusion complexation of indomethacin with starch by the alkaline method

  • Anna Marinopoulou
  • Dimitrios Christofilos
  • John Arvanitidis
  • Stylianos N. RaphaelidesEmail author
Original Article
  • 5 Downloads

Abstract

Starch systems containing indomethacin were prepared by the alkaline method and characterized in order to investigate the potential of this method to produce amylose molecular inclusion complexes as targeted and controlled drug delivery carriers. Three types of starches with different amylose/amylopectin composition were used to prepare the systems. Their structure was probed by X-ray diffraction (XRD) and Raman spectroscopy, whereas their morphology was investigated by Optical microscopy and Confocal laser scanning microscopy (CLSM). Raman spectroscopy revealed the presence of p-chlorobenzoic acid, the degradation product of the alkaline hydrolysis of indomethacin in the matrix of the starch systems. The results were confirmed by XRD measurements and the degree of crystallinity of the starch systems ranged from 35 to 90%. In vitro release testing of indomethacin from the starch systems in the simulated gastric and small intestine fluid showed very low concentrations of indomethacin. CLSM micrographs and optical microscopic examination revealed the presence mostly of the p-chlorobenzoic acid, in the matrix of the starch systems, rather than of indomethacin. The results, in general, indicated that the p-chlorobenzoic acid molecules were either included in the amylose helices or they have been entrapped between the helices of the complexed amylose whereas the few indomethacin molecules present in the starch matrix probably were also mechanically entrapped.

Keywords

Alkaline technique Inclusion complexes Indomethacin p-Chlorobenzoic acid Starch Raman spectroscopy 

Notes

Acknowledgements

The financial support of Dr. Marinopoulou through a postdoctoral fellowship granted by the Greek State Foundation of Scholarships (IKY) is gratefully acknowledged. The scholarship was funded by the "Enhancement of Post-graduate Researchers” Program, from the resources of the OP “Human Resources Development, Education and Lifelong Learning” with Priority Axes 6, 8, 9 and co-financed by the European Social Fund-(ESF) and the Greek government. Authors also acknowledge the Center for Interdisciplinary Research and Innovation of the Aristotle University of Thessaloniki (CIRI-AUTH) for the use of Raman instrumentation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Insel, P.A.: Analgesic-antipyretic and anti-inflammatory agents and drugs employed in the treatment of gout. In: Hardman, J.G., Limbird, L.E., Molinoff, P.B., Ruddon, R.W., Gilman, A.G. (eds.) Goodman and. Gilman’s. The pharmacological basis of therapeutics, 9th edn., pp. 617–657. McGraw-Hill, New York (1996)Google Scholar
  2. 2.
    Bulbena, O., Escolar, G., Navarro, C., Bravo, L., Pfeiffer, C.J.: Gastroprotective effect of zinc acexamate against damage induced by nonsteroidal anti-inflammatory drugs: a morphological study. Dig. Dis. Sci. 38, 730–739 (1993)CrossRefGoogle Scholar
  3. 3.
    Laine, L.: Approaches to non-steroidal anti-inflammatory drug use in the high-risk patient. Gastroenterology 120, 594–606 (2001)CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Tajima, K., Kageyama, K., Kyoi, T.: Irsogladine maleate suppresses indomethacin-induced elevation of proinflammatory cytokines and gastric injury in rats. World J. Gastroenterol. 14, 4784–4790 (2008)CrossRefGoogle Scholar
  5. 5.
    Soehngen, E.C., Godin-Ostro, E., Fielder, F.G., Ginsberg, R.S., Slusher, M.A., Weiner, A.L.: Encapsulation of indomethacin in liposomes provides protection against both gastric and intestinal ulceration when orally administered to rats. Arthritis Rheum. 31, 414–422 (1998)CrossRefGoogle Scholar
  6. 6.
    Hetal, T., Bindesh, P., Sneha, T.: A review on techniques for oral bioavailability enhancement of drugs. Int. J. Pharm. Sci. Rev. Res. 4, 203–223 (2010)Google Scholar
  7. 7.
    Yalkowsky, S.H., Dannenfelser, R.M.: Aquasol database of aqueous solubility. Version 5. PC Version, College of Pharmacy. University of Arizona-Tucson, AZ (1992)Google Scholar
  8. 8.
    Ribeiro-Rama, A.C., Figueiredo, I.V., Veiga, F., Castel-Branco, M.M., Cabrita, A.M., Caramona, M.M.: Evaluation of gastric toxicity of indomethacin acid, salt form and complexed forms with hydroxypropyl-beta-cyclodextrin on Wistar rats: histo-pathologic analysis. Fundam. Clin. Pharmacol. 23, 747–755 (2009)CrossRefGoogle Scholar
  9. 9.
    Chaudhary, V.B., Patel, J.K.: Cyclodextrin inclusion complex to enhance solubility of poorly water-soluble drugs: a review. Int. J. Pharm. Sci. Res. 4, 68–76 (2013)Google Scholar
  10. 10.
    Putseys, J.A., Lamberts, L., Delcour, J.A.: Amylose-inclusion complexes: formation, identity and physico-chemical properties. J. Cereal Sci. 51, 238–247 (2010)CrossRefGoogle Scholar
  11. 11.
    Obiro, W.C., Ray, S.S., Emmambux, M.N.: V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev. Int. 28, 412–438 (2012)CrossRefGoogle Scholar
  12. 12.
    Yang, L., Zhang, B., Yi, J., Liang, J., Liu, Y., Zhang, L.: Preparation, characterization, and properties of amylose-ibuprofen inclusion complexes. Starch/Stärke 65, 593–602 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhang, L., Cheng, H., Zheng, C., Dong, F., Man, S., Dai, Y.: Structural and release properties of amylose inclusion complexes with ibuproben. J. Drug Deliv. Sci. Technol. 31, 101–107 (2016)CrossRefGoogle Scholar
  14. 14.
    Marinopoulou, A., Papastergiadis, E., Raphaelides, S.N.: Inclusion complexes of non-granular maize starch with fatty acids and ibuprofen. a comparative study of their morphology and structure. Starch/Stärke 71, 1800100 (2019)CrossRefGoogle Scholar
  15. 15.
    Marinopoulou, A., Papastergiadis, E., Raphaelides, S.N., Kontominas, M.G.: Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes. Carbohydr. Polym. 141, 106–115 (2016)CrossRefGoogle Scholar
  16. 16.
    Lalush, I., Bar, H., Zakaria, I., Eichler, S., Shimoni, E.: Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic acid. Biomacromol 6, 121–130 (2005)CrossRefGoogle Scholar
  17. 17.
    Yang, Y., Gu, Z., Zhang, G.: Delivery of bioactive conjugated linoleic acid with self-assembled amylose-CLA complex. J. Agric. Food Chem. 57, 7125–7130 (2009)CrossRefGoogle Scholar
  18. 18.
    Raphaelides, S.N., Karkalas, J.: Thermal-dissociation of amylose fatty-acid complexes. Carbohydr. Res. 172, 65–82 (1988)CrossRefGoogle Scholar
  19. 19.
    Karkalas, J., Ma, S., Morrison, W.R., Pethrick, R.A.: Some factors determining the thermal-properties of amylose inclusion complexes with fatty-acids. Carbohydr. Res. 268, 233–247 (1995)CrossRefGoogle Scholar
  20. 20.
    Eliasson, A.C., Krog, N.: Physical properties of amylose–monoglyceride complexes. J. Cereal Sci. 3, 239–248 (1985)CrossRefGoogle Scholar
  21. 21.
    Raphaelides, S.N., Dimitreli, G., Exarhopoulos, S., Ilia, E., Koutsomihali, P.: A process designed for the continuous production of starch inclusion complexes on an industrial scale. Food Bioprod. Process. 96, 245-255 (2015)CrossRefGoogle Scholar
  22. 22.
    Vasiliadou, E., Raphaelides, S.N., Papastergiadis, E.: Effect of heating time and temperature on partially gelatinized starch-fatty acid interactions. LWT Food Sci Technol. 60, 698–707 (2015)CrossRefGoogle Scholar
  23. 23.
    AOAC. Moisture content determination in flours. Ιn: Official methods of analysis of the association of official analytical chemists Vol 2, Washington DC (1990)Google Scholar
  24. 24.
    Karkalas, J., Raphaelides, S.: Quantitative aspects of amylose lipid interactions. Carbohydr. Res. 157, 215–234 (1986)CrossRefGoogle Scholar
  25. 25.
    Del Arco, M., Cebadera, E., Gutierrez, S., Martın, C., Montero, M.J., Rives, V., Rocha, J., Sevilla, M.A.: Mg, Al layered double hydroxides with intercalated indomethacin: synthesis, characterization, and pharmacological study. J. Pharm. Sci. 93, 1649–1658 (2004)CrossRefGoogle Scholar
  26. 26.
    Stribeck, N.: X-ray scattering of soft matter. Ιn: Determination of WAXS crystallinity, pp. 102–104. Springer, Berlin (2007)Google Scholar
  27. 27.
    Maheshwari, R.K., Rathore, A., Agrawal, A., Gupta, M.A.: New spectrophotometric estimation of indomethacin capsules with niacinamide as hydrotropic solubilizing agent. Pharm. Methods 2, 184–188 (2011)CrossRefGoogle Scholar
  28. 28.
    Singh, R., Maheshwari, R.K., Gahlot, N.: Formulation development of topical solutions of poorly water-soluble drug indomethacin employing novel application of mixed solvency concept and their evaluation. Int. J. Green Pharm. 12, 335–379 (2018)Google Scholar
  29. 29.
    Ali, K.F., Albakaa, R.M., Ali, Z.H.: New assay method UV spectroscopy for determination of Indomethacin in pharmaceutical formulation. J. Chem. Pharm. Res. 7, 1591–1596 (2015)Google Scholar
  30. 30.
    Conde-Petit, B., Escher, F., Nuessli, J.: Structural features of starch-flavor complexation in food model systems. Trends Food Sci. Technol. 17, 227–235 (2006)CrossRefGoogle Scholar
  31. 31.
    Eliasson, A.C., Finstad, H., Ljunger, G.: A study of starch–lipid interactions for some native and modified maize starches. Starch/Stärke 40, 95–100 (1988)CrossRefGoogle Scholar
  32. 32.
    Kougioumtzoglou, A., Peikova, L., Georgieva, M., Zlatkov, A.: Evaluation of the stability of indomethacin substance under a model of physiological conditions, using modified and validated RP-HPLC method. Pharmacia 62, 10–17 (2015)Google Scholar
  33. 33.
    Kitade, T., Kitamura, K., Takegami, S., Yoshinaga, R., Sasakawa, M., Tokuhira, A.: Determination of indomethacin by room-temperature phosphorimetry on a poly(vinyl alcohol) substrate. Anal. Sci. 7, 835–838 (2002)CrossRefGoogle Scholar
  34. 34.
    Kao, J.Y., McGoverin, C.M., Graeser, K.A., Rades, T., Gordon, K.C.: Measurement of amorphous indomethacin stability with NIR and Raman spectroscopy. Vib. Spectrosc. 58, 19–26 (2012)CrossRefGoogle Scholar
  35. 35.
    Fini, A., Cavallari, C., Ospitali, F.: Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles. Eur. J. Pharm. Biopharm. 70, 409–420 (2008)CrossRefGoogle Scholar
  36. 36.
    Almeida, M.R., Alves, R.S., Nascimbem, L.B., Stephani, R., Poppi, R.J., de Oliveira, L.F.: Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal. Bioanal. Chem. 397, 2693–2701 (2010)CrossRefGoogle Scholar
  37. 37.
    Larkin, P.J., Wasylyk, J., Raglione, M.: Application of low- and mid-frequency raman spectroscopy to characterize the amorphous-crystalline transformation of indomethacin. Appl. Spectrosc. 69, 1217–1228 (2015)CrossRefGoogle Scholar
  38. 38.
    Rossi, B., Verrocchio, P., Viliani, G., Scarduelli, G., Guella, G., Mancini, I.: Vibrational properties of inclusion complexes: the case of indomethacin-cyclodextrin. J. Chem. Phys. 125, 44511–44517 (2006)CrossRefGoogle Scholar
  39. 39.
    Sundaraganesan, N., Anand, B., Meganathan, C., Joshua, B.D.: FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of p-chlorobenzoic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 69, 871–879 (2008)CrossRefGoogle Scholar
  40. 40.
    Cheetham, N.W.H., Tao, L.P.: Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr. Polym. 36, 277–284 (1998)CrossRefGoogle Scholar
  41. 41.
    Zhang, B., Huang, Q., Luo, F.X., Fu, L.: Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocoll. 28, 174–181 (2012)CrossRefGoogle Scholar
  42. 42.
    Chang, F., He, X., Huang, Q.: The physicochemical properties of swelled maize starch granules complexed with lauric acid. Food Hydrocoll. 32, 365–372 (2013)CrossRefGoogle Scholar
  43. 43.
    Lin, S.: Isolation and solid-state characteristics of a new crystal form of indomethacin. J. Pharm. Sci. 81, 572–576 (1992)CrossRefGoogle Scholar
  44. 44.
    Rudrangi, S.R., Bhomia, R., Trivedi, V., Vine, G.J., Mitchell, J.C., Alexander, B.D., Wicks, S.R.: Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes. Int. J. Pharm. 479, 381–390 (2015)CrossRefGoogle Scholar
  45. 45.
    Morris, M.C., McMurdie, H.F., Evans, E.H., Paretzkin, B., DeGroot, J.H.: Standard X-ray diffraction powder patterns: Sect. 16-data for 86 substances. In: Hubbard, C., Carmel, S.J. (eds.) National Bureau of Standards, Washington DC (1979)CrossRefGoogle Scholar
  46. 46.
    Marinopoulou, A., Papastergiadis, E., Raphaelides, S.N.: An investigation into the structure, morphology and thermal properties of amylomaize starch-fatty acid complexes prepared at different temperatures. Food Res. Int. 90, 111–120 (2016)CrossRefGoogle Scholar
  47. 47.
    Lorenzo, A.T., Müller, A.J.: Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J. Polym. Sci. B Polym. Phys. 46, 1478–1487 (2008)CrossRefGoogle Scholar
  48. 48.
    Rundle, R.E., Foster, J.F., Baldwin, R.R.: On the nature of the starch-iodine complex. J. Am. Chem. Soc. 66, 2116–2120 (1944)CrossRefGoogle Scholar
  49. 49.
    Bates, L., French, D., Rundle, R.E.: Amylose and amylopectin content of starches determined by their iodine complex formation. J. Am. Chem. Soc. 65, 142–148 (1943)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Anna Marinopoulou
    • 1
  • Dimitrios Christofilos
    • 2
  • John Arvanitidis
    • 3
  • Stylianos N. Raphaelides
    • 1
    Email author
  1. 1.Central Research Laboratory for the Physical and Chemical Testing of Foods, Department of Food TechnologyATEI of ThessalonikiThessalonikiGreece
  2. 2.School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations