Advertisement

Allosteric signal-amplification sensing with polymer-based supramolecular hosts

  • Gaku FukuharaEmail author
Review Article
  • 85 Downloads

Abstract

The lock-and-key principle is a fundamental substance to create chemosensors that sense target analytes. Our results based on the lock-and-key concept, i.e., inherently chiral molecular clips and resorcin[4]arenes, were introduced and their inherent problems were also explained. Hence, a novel sensing methodology, “supramolecular allosteric signal-amplification sensing” (SASS), has been proposed to develop functional polythiophenes and polysaccharides for amino acids, peptides, and oligosaccharides that are difficult to sense. The polythiophene sensors showed amplified responses through a positive allosterism, and the polysaccharide sensors capture oligosaccharides in aqueous media and then were expanded to an extremely sensitive in situ oligosaccharide sensor that is dynamically controllable. The present SASS strategy using polymer chemosensors that behave very differently from common ones is essentially based on an allosterically molecular information propagation, upon interaction of an analyte to a chemosensor’s binding pocket, to an amplifying polymer reporter.

Keywords

Chemosensor Supramolecular sensing The lock-and-key principle Allosterism Amplification 

Notes

Acknowledgements

The author greatly appreciate the committee members of Association of Research for Host–Guest and Supramolecular Chemistry for awarding “SHGSC Japan Award of Excellence 2018”. The author is also deeply grateful to Prof. Yoshihisa Inoue of Osaka University for his positive and constructive suggestions, to all the group members developed the studies in this review, and to the financial support by the Japan Society for the Promotion of Science (JSPS) (Nos. 20850023, 23750129, 26620061, and JP16H06041) and Japan Science Technology Agency (JST), PRESTO (No. JPMJPR17PA) and by research grants from the Nikko Memorial Foundation, the Shorai Foundation for Science and Technology, the Nikki-Saneyoshi (JGC-S) Scholarship Foundation, the Ogasawara Foundation for the Promotion of Science & Engineering, the Iwatani Naoji Foundation, the Sumitomo Foundation, the Nakatani Foundation, and the Kurata Grants. The author finally thanks Ms. Yuki Fukuhara for her assistance in the preparation of this review.

References

  1. 1.
    Feringa, B.L.: The art of building small: from molecular switches to motors (Nobel lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017)CrossRefGoogle Scholar
  2. 2.
    Sauvage, J.-P.: From chemical topology to molecular machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017)CrossRefGoogle Scholar
  3. 3.
    Stoddart, J.F.: Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017)CrossRefGoogle Scholar
  4. 4.
    Lehn, J.-M.: Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988)CrossRefGoogle Scholar
  5. 5.
    Cram, D.J.: The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988)CrossRefGoogle Scholar
  6. 6.
    Pedersen, C.J.: The discovery of crown ethers (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988)CrossRefGoogle Scholar
  7. 7.
    Pringsheim, H.: The Chemistry of the Monosaccharides and of the Polysaccharides. McGraw-Hill, New York (1932)Google Scholar
  8. 8.
    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)CrossRefGoogle Scholar
  9. 9.
    Fischer, E.: Einfluss der Configuration auf die Wirkung der Enzyme Influence of configuration on the action of enzymes. Ber. Dtsch. Chem. Ges. 27, 2985–2993 (1894)Google Scholar
  10. 10.
    Wintner, E.A., Conn, M.M., Rebek, J. Jr.: Studies in molecular replication. Acc. Chem. Res. 27, 198–203 (1994)CrossRefGoogle Scholar
  11. 11.
    Fabbrizzi, L., Poggi, A.: Sensors and switches from supramolecular chemistry. Chem. Soc. Rev. 24, 197–202 (1995)CrossRefGoogle Scholar
  12. 12.
    Ikeda, A., Shinkai, S.: Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem. Rev. 97, 1713–1734 (1997)CrossRefPubMedGoogle Scholar
  13. 13.
    Hartley, J.H., James, T.D., Ward, C.J.: Synthetic receptors. J. Chem. Soc. Perkin Trans. 1, 3155–3184 (2000)CrossRefGoogle Scholar
  14. 14.
    Bell, T.W., Hext, N.M.: Supramolecular optical chemosensors for organic analytes. Chem. Soc. Rev. 33, 589–598 (2004)PubMedGoogle Scholar
  15. 15.
    Ikeda, M., Ochi, R., Hamachi, I.: Supramolecular hydrogel-based protein and chemosensor array. Lab Chip. 10, 3325–3334 (2010)CrossRefPubMedGoogle Scholar
  16. 16.
    Pinalli, R., Dalcanale, E.: Supramolecular sensing with phosphonate cavitands. Acc. Chem. Res. 46, 399–411 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    Ghale, G., Nau, W.M.: Dynamically analyte-responsive macrocyclic host-fluorophore systems. Acc. Chem. Res. 47, 2150–2159 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    Amabilino, D.B.: Supramolecular sensing: enzyme activity with a twist. Nat. Chem. 7, 275–277 (2015)CrossRefPubMedGoogle Scholar
  19. 19.
    Anslyn, E.V.: Supramolecular analytical chemistry. J. Org. Chem. 72, 687–699 (2007)CrossRefPubMedGoogle Scholar
  20. 20.
    You, L., Zha, D., Anslyn, E.V.: Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 115, 7840–7892 (2015)CrossRefPubMedGoogle Scholar
  21. 21.
    A review summarizing analytical and supramolecular chemistry will be submitted by the authorGoogle Scholar
  22. 22.
    Wang, B., Anslyn, E.V. (eds.): Chemosensors: Principles, Strategies, and Applications. Wiley, Hoboken (2011)Google Scholar
  23. 23.
    Nolan, E.M., Lippard, S.J.: Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 108, 3443–3480 (2008)CrossRefPubMedGoogle Scholar
  24. 24.
    Xu, Z., Yoon, J., Spring, D.R.: Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 39, 1996–2006 (2010)CrossRefPubMedGoogle Scholar
  25. 25.
    Jung, J.H., Lee, J.H., Shinkai, S.: Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem. Soc. Rev. 40, 4464–4474 (2011)CrossRefPubMedGoogle Scholar
  26. 26.
    Yeung, M.C.-L., Yam, V.W.-W.: Luminescent cation sensors: from host–guest chemistry, supramolecular chemistry to reaction-based mechanisms. Chem. Soc. Rev. 44, 4192–4202 (2015)CrossRefPubMedGoogle Scholar
  27. 27.
    Gale, P.A. (ed.): Anion coordination chemistry II. Coord. Chem. Rev. 250, 2917–3244 (2006)Google Scholar
  28. 28.
    McDonald, K.P., Hua, Y., Lee, S., Flood, A.H.: Shape persistence delivers lock-and-key chloride binding in triazolophanes. Chem. Commun. 48, 5065–5075 (2012)CrossRefGoogle Scholar
  29. 29.
    Butler, S.J., Parker, D.: Anion binding in water at lanthanide centres: from structure and selectivity to signalling and sensing. Chem. Soc. Rev. 42, 1652–1666 (2013)CrossRefPubMedGoogle Scholar
  30. 30.
    Busschaert, N., Caltagirone, C., Rossom, W.V., Gale, P.A.: Applications of supramolecular anion recognition. Chem. Rev. 115, 8038–8155 (2015)CrossRefPubMedGoogle Scholar
  31. 31.
    Vargas-Zúñiga, G.I., Sessler, J.L.: Pyrrole N–H anion complexes. Coord. Chem. Rev. 345, 281–296 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kubik, S.: Anion recognition in aqueous media by cyclopeptides and other synthetic receptors. Acc. Chem. Res. 50, 2870–2878 (2017)CrossRefPubMedGoogle Scholar
  33. 33.
    Elosua, C., Matias, I.R., Bariain, C., Arregui, F.J.: Volatile organic compound optical fiber sensors: a review. Sensors 6, 1440–1465 (2006)CrossRefGoogle Scholar
  34. 34.
    Johnson, K.S., Needoba, J.A., Riser, S.C., Showers, W.J.: Chemical sensor networks for the aquatic environment. Chem. Rev. 107, 623–640 (2007)CrossRefPubMedGoogle Scholar
  35. 35.
    Pejcic, B., Eadington, P., Ross, A.: Environmental monitoring of hydrocarbons: a chemical sensor perspective. Environ. Sci. Technol. 41, 6333–6342 (2007)CrossRefPubMedGoogle Scholar
  36. 36.
    Rambo, B.M., Sessler, J.L.: Oligopyrrole macrocycles: receptors and chemosensors for potentially hazardous materials. Chem. Eur. J. 17, 4946–4959 (2011)CrossRefPubMedGoogle Scholar
  37. 37.
    Chen, L., Wu, D., Yoon, J.: Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens. 3, 27–43 (2018)CrossRefPubMedGoogle Scholar
  38. 38.
    Jalal, A.H., Alam, F., Roychoudhury, S., Umasankar, Y., Pala, N., Bhansali, S.: Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3, 1246–1263 (2018)CrossRefPubMedGoogle Scholar
  39. 39.
    Yinon, J.: Detection of explosives by electronic noses. Anal. Chem. 75, 98A–105A (2003)CrossRefGoogle Scholar
  40. 40.
    Toal, S.J., Trogler, W.C.: Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 16, 2871–2883 (2006)CrossRefGoogle Scholar
  41. 41.
    Swager, T.M.: Iptycenes in the design of high performance polymers. Acc. Chem. Res. 41, 1181–1189 (2008)CrossRefPubMedGoogle Scholar
  42. 42.
    Salinas, Y., Martínez-Máñez, R., Marcos, M.D., Sancenón, F., Costero, A.M., Parra, M., Gil, S.: Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 41, 1261–1296 (2012)CrossRefPubMedGoogle Scholar
  43. 43.
    Peczuh, M.W., Hamilton, A.D.: Peptide and protein recognition by designed molecules. Chem. Rev. 100, 2479–2494 (2000)CrossRefPubMedGoogle Scholar
  44. 44.
    Kubota, R., Hamachi, I.: Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Chem. Soc. Rev. 44, 4454–4471 (2015)CrossRefPubMedGoogle Scholar
  45. 45.
    Vilaivan, T.: Pyrrolidinyl PNA with α/β-dipeptide backbone: from development to applications. Acc. Chem. Res. 48, 1645–1656 (2015)CrossRefPubMedGoogle Scholar
  46. 46.
    Shivananju, B.N., Yu, W., Liu, Y., Zhang, Y., Lin, B., Li, S., Bao, Q.: The roadmap of graphene-based optical biochemical sensors. Adv. Funct. Mater. 27, 1603918 (2017)CrossRefGoogle Scholar
  47. 47.
    Singh, K., Rotaru, A.M., Beharry, A.A.: Fluorescent chemosensors as future tools for cancer biology. ACS Chem. Biol. 13, 1785–1798 (2018)CrossRefPubMedGoogle Scholar
  48. 48.
    Zwang, T.J., Tse, E.C.M., Barton, J.K.: ACS Chem. Biol. 13, 1799–1809 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cram, D.J., Cram, J.M.: Design of complexes between synthetic hosts and organic guests. Acc. Chem. Res. 11, 8–14 (1978)CrossRefGoogle Scholar
  50. 50.
    Green, M.M., Cheon, K.-S., Yang, S.-Y., Park, J.-W., Swansburg, S., Liu, W.: Chiral studies across the spectrum of polymer science. Acc. Chem. Res. 34, 672–680 (2001)CrossRefPubMedGoogle Scholar
  51. 51.
    Palmans, A.R.A., Meijer, E.W.: Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 46, 8948–8968 (2007)CrossRefGoogle Scholar
  52. 52.
    Hembury, G.A., Borovkov, V.V., Inoue, Y.: Chirality-sensing supramolecular systems. Chem. Rev. 108, 1–73 (2008)CrossRefPubMedGoogle Scholar
  53. 53.
    Wolf, C., Bentley, K.W.: Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output. Chem. Soc. Rev. 42, 5408–5424 (2013)CrossRefPubMedGoogle Scholar
  54. 54.
    Yashima, E., Ousaka, N., Taura, D., Shimomura, K., Ikai, T., Maeda, K.: Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016)CrossRefPubMedGoogle Scholar
  55. 55.
    Pu, L.: Simultaneous determination of concentration and enantiomeric composition in fluorescent sensing. Acc. Chem. Res. 50, 1032–1040 (2017)CrossRefPubMedGoogle Scholar
  56. 56.
    de Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)CrossRefPubMedGoogle Scholar
  57. 57.
    Gunnlaugsson, T., Ali, H.D.P., Glynn, M., Kruger, P.E., Hussey, G.M., Pfeffer, F.M., dos Santos, C.M.G., Tierney, J.: Fluorescent photoinduced electron transfer (PET) sensors for anions; from design to potential application. J. Fluoresc. 15, 287–299 (2005)CrossRefPubMedGoogle Scholar
  58. 58.
    Daly, B., Ling, J., de Silva, A.P.: Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Chem. Soc. Rev. 44, 4203–4211 (2015)CrossRefPubMedGoogle Scholar
  59. 59.
    Merkx, M.: Rational design of FRET-based sensor proteins. Rev. Fluoresc. 5, 69–87 (2008)Google Scholar
  60. 60.
    Wu, J., Liu, W., Ge, J., Zhang, H., Wang, P.: New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 40, 3483–3495 (2011)CrossRefPubMedGoogle Scholar
  61. 61.
    He, L., Dong, B., Liu, Y., Lin, W.: Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem. Soc. Rev. 45, 6449–6461 (2016)CrossRefPubMedGoogle Scholar
  62. 62.
    Liu, J., Lam, J.W.Y., Tang, B.Z.: Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 109, 5799–5867 (2009)CrossRefPubMedGoogle Scholar
  63. 63.
    Hong, Y., Lam, J.W.Y., Tang, B.Z.: Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011)CrossRefPubMedGoogle Scholar
  64. 64.
    Borovkov, V.V., Inoue, Y.: Supramolecular chirogenesis in host–guest systems containing porphyrinoids. Top. Curr. Chem. 265, 89–146 (2006)CrossRefGoogle Scholar
  65. 65.
    Fukuhara, G., Nakamura, T., Yang, C., Mori, T., Inoue, Y.: Diasterodifferentiating photocyclodimerization of 2-anthracenecarboxylate tethered to cellulose scaffold. J. Org. Chem. 75, 4307–4310 (2010)CrossRefPubMedGoogle Scholar
  66. 66.
    Fukuhara, G., Nakamura, T., Yang, C., Mori, T., Inoue, Y.: Dual chiral, dual supramolecular diasterodifferentiating photocyclodimerization of 2-anthracenecarboxylate tethered to amylose scaffold. Org. Lett. 12, 3510–3513 (2010)CrossRefPubMedGoogle Scholar
  67. 67.
    Fukuhara, G., Imai, M., Yang, C., Mori, T., Inoue, Y.: Enantiodifferentiating photoisomerization of (Z,Z)-1,3-cyclooctadiene included and sensitized by naphthoyl-curdlan. Org. Lett. 13, 1856–1859 (2011)CrossRefPubMedGoogle Scholar
  68. 68.
    Fukuhara, G., Okazaki, T., Lessi, M., Nishijima, M., Yang, C., Mori, T., Mele, A., Bellina, F., Chiappe, C., Inoue, Y.: Chiral ionic liquid-mediated photochirogenesis. Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid. Org. Biomol. Chem. 9, 7105–7112 (2011)CrossRefPubMedGoogle Scholar
  69. 69.
    Fukuhara, G., Nakamura, T., Kawanami, Y., Yang, C., Mori, T., Hiramatsu, H., Dan-oh, Y., Tsujimoto, K., Inoue, Y.: Strictly diastereocontrolled photocyclodimerization of 2-anthracenecarboxylates tethered to cyclic tetrasaccharides. Chem. Commun. 48, 9156–9158 (2012)CrossRefGoogle Scholar
  70. 70.
    Fukuhara, G., Nakamura, T., Kawanami, Y., Yang, C., Mori, T., Hiramatsu, H., Dan-oh, Y., Nishimoto, T., Tsujimoto, K., Inoue, Y.: Diasterodifferentiating photocyclodimerization of 2-anthracenecarboxylates tethered to a cyclic tetrasaccharide scaffold: critical control of photoreactivity and stereoselectivity. J. Org. Chem. 78, 10996–11006 (2013)CrossRefPubMedGoogle Scholar
  71. 71.
    Fukuhara, G., Iida, K., Kawanami, Y., Tanaka, H., Mori, T., Inoue, Y.: Excited-state dynamics achieved ultimate stereocontrol of photocyclodimerization of anthracenecarboxylates on a glucose scaffold. J. Am. Chem. Soc. 137, 15007–15014 (2015)CrossRefPubMedGoogle Scholar
  72. 72.
    Fukuhara, G., Iida, K., Mori, T., Inoue, Y.: Critical control by scaffold flexibility achieved in diastereodifferentiating photocyclodimerization of 2-anthracenecarboxylate. J. Photochem. Photobiol. A 331, 76–83 (2016)CrossRefGoogle Scholar
  73. 73.
    Schneider, H.-J.: Limitations and extensions of the lock-and-key principle: differences between gas state, solution and solid state structures. Int. J. Mol. Sci. 16, 6694–6717 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Leffler, J.E.: The enthalpy–entropy relationship and its implications for organic chemistry. J. Org. Chem. 20, 1202–1231 (1955)CrossRefGoogle Scholar
  75. 75.
    Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)CrossRefPubMedGoogle Scholar
  76. 76.
    Ford, D.M.: Enthalpy–entropy compensation is not a general feature of weak association. J. Am. Chem. Soc. 127, 16167–16170 (2005)CrossRefPubMedGoogle Scholar
  77. 77.
    Leung, D.H., Bergman, R.G., Raymond, K.N.: Enthalpy–entropy compensation reveals solvent reorganization as a driving force for supramolecular encapsulation in water. J. Am. Chem. Soc. 130, 2798–2805 (2008)CrossRefPubMedGoogle Scholar
  78. 78.
    Fukuhara, G.: Polymer-based supramolecular sensing and application to chiral photochemistry. Polym. J. 47, 649–655 (2015)CrossRefGoogle Scholar
  79. 79.
    Lavigne, J.J., Anslyn, E.V.: Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors. Angew. Chem. Int. Ed. 40, 3118–3130 (2001)CrossRefGoogle Scholar
  80. 80.
    Umali, A.P., Anslyn, E.V.: A general approach to differential sensing using synthetic molecular receptors. Curr. Opin. Chem. Biol. 14, 685–692 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Fukuhara, G., Madenci, S., Polkowska, J., Bastkowski, F., Klärner, F.-G., Origane, Y., Kaneda, M., Mori, T., Wada, T., Inoue, Y.: Inherently chiral molecular clips: synthesis, chiroptical properties, and application to chiral discrimination. Chem. Eur. J. 13, 2473–2479 (2007)CrossRefPubMedGoogle Scholar
  82. 82.
    Fukuhara, G., Klärner, F.-G., Mori, T., Wada, T., Inoue, Y.: Supramolecular complexation and photochirogenesis with inherently chiral molecular clip: enantiodifferentiating photoisomerization of (Z,Z)-1,3-cyclooctadiene and polar photoaddition to 1,1-diphenylpropene. Photochem. Photobiol. Sci. 7, 1493–1500 (2008)CrossRefPubMedGoogle Scholar
  83. 83.
    Wiegmann, S., Fukuhara, G., Neumann, B., Stammler, H.-G., Inoue, Y., Mattay, J.: Inherently chiral resorcin[4]arenes with urea and amide side arms: synthesis, structure and chiral recognition. Eur. J. Org. Chem. (2013).  https://doi.org/10.1002/ejoc.201201272 CrossRefGoogle Scholar
  84. 84.
    Rowan, A.E., Elemans, J.A.A.W., Nolte, R.J.M.: Molecular and supramolecular objects from glycoluril. Acc. Chem. Res. 32, 995–1006 (1999)CrossRefGoogle Scholar
  85. 85.
    Klärner, F.-G., Kahlert, B.: Molecular tweezers and clips as synthetic receptors. Molecular recognition and dynamics in receptor–substrate complexes. Acc. Chem. Res. 36, 919–932 (2003)CrossRefPubMedGoogle Scholar
  86. 86.
    Klärner, F.-G., Burkert, U., Kamieth, M., Boese, R., Benet-Buchholz, J.: Molecular tweezers as synthetic receptors: molecular recognition of electron-deficient aromatic and aliphatic substrates. Chem. Eur. J. 5, 1700–1707 (1999)CrossRefGoogle Scholar
  87. 87.
    Klärner, F.-G., Polkowska, J., Panitzky, J., Seelbach, U.P., Burkert, U., Kamieth, M., Baumann, M., Wigger, A.E., Boese, R., Bläser, D.: Effect of substituents on the complexation of aromatic and quinoid substrates with molecular tweezers and clips. Eur. J. Org. Chem. (2004).  https://doi.org/10.1002/ejoc.200300704 CrossRefGoogle Scholar
  88. 88.
    Fokkens, M., Schrader, T., Klärner, F.-G.: A molecular tweezer for lysine and arginine. J. Am. Chem. Soc. 127, 14415–14421 (2005)CrossRefPubMedGoogle Scholar
  89. 89.
    Klärner, F.-G., Kahlet, B., Nellesen, A., Zienau, J., Ochsenfeld, C., Schrader, T.: Molecular tweezer and clip in aqueous solution: unexpected self-assembly, powerful host–guest complex formation, quantum chemical 1H NMR shift calculation. J. Am. Chem. Soc. 128, 4831–4841 (2006)CrossRefPubMedGoogle Scholar
  90. 90.
    Klärner, F.-G., Panitzky, J., Bläser, D., Boese, R.: Synthesis and supramolecular structures of molecular clips. Tetrahedron 57, 3673–3687 (2001)CrossRefGoogle Scholar
  91. 91.
    Brown, S.P., Schaller, T., Seelbach, U.P., Koziol, F., Ochsenfeld, C., Klärner, F.-G., Spiess, H.W.: Structure and dynamics of the host–guest complex of a molecular tweezer: coupling synthesis, soli-state NMR, and quantum-chemical calculations. Angew. Chem. Int. Ed. 40, 717–720 (2001)CrossRefGoogle Scholar
  92. 92.
    Yang, H., Bohne, C.: Chiral discrimination in the fluorescence quenching of pyrene complexed to β-cyclodextrin. J. Photochem. Photobiol. A 86, 209–217 (1995)CrossRefGoogle Scholar
  93. 93.
    Kano, K., Hasegawa, H., Miyamura, M.: Chiral recognition of dipeptide methyl esters by an anionic β-cyclodextrin. Chirality 13, 474–482 (2001)CrossRefPubMedGoogle Scholar
  94. 94.
    Rekharsky, M.V., Inoue, Y.: Complexation and chiral recognition thermodynamics of 6-amino-6-deoxy-β-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and coulombic interactions. J. Am. Chem. Soc. 124, 813–826 (2002)CrossRefPubMedGoogle Scholar
  95. 95.
    Ma, X., Zhao, Y.: Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev. 115, 7794–7839 (2015)CrossRefPubMedGoogle Scholar
  96. 96.
    Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., Arnheim, N.: Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985)CrossRefPubMedGoogle Scholar
  97. 97.
    Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A.: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988)CrossRefPubMedGoogle Scholar
  98. 98.
    de la Cruz, S., López-Calleja, I., Martín, R., González, I., Alcocer, M., García, T.: Recent advances in the detection of allergens in foods. Methods Mol. Biol. 263–295 (2017)Google Scholar
  99. 99.
    Grigore, A., Albulescu, A., Albulescu, R.: Current methods for tumor-associated macrophages investigation. J. Immunoassay Immunochem. 39, 119–135 (2018)CrossRefPubMedGoogle Scholar
  100. 100.
    Monod, J., Changeux, J.-P., Jacob, F.: Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329 (1963)CrossRefPubMedGoogle Scholar
  101. 101.
    Kobe, B., Kemp, B.E.: Active site-directed protein regulation. Nature 402, 373–376 (1999)CrossRefPubMedGoogle Scholar
  102. 102.
    Whitty, A.: Cooperativity and biological complexity. Nat. Chem. Biol. 4, 435–439 (2008)CrossRefPubMedGoogle Scholar
  103. 103.
    Williamson, J.R.: Cooperativity in macromolecular assembly. Nat. Chem. Biol. 4, 458–465 (2008)CrossRefPubMedGoogle Scholar
  104. 104.
    Shinkai, S., Ikeda, M., Sugasaki, A., Takeuchi, M.: Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity. Acc. Chem. Res. 34, 494–503 (2001)CrossRefPubMedGoogle Scholar
  105. 105.
    Hunter, C.A., Anderson, H.L.: What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009)CrossRefGoogle Scholar
  106. 106.
    Rebek, J. Jr.: Binding forces, equilibria, and rates: new models for enzymic catalysis. Acc. Chem. Res. 17, 258–264 (1984)CrossRefGoogle Scholar
  107. 107.
    Zhu, L., Anslyn, E.V.: Signal amplification by allosteric catalysis. Angew. Chem. Int. Ed. 45, 1190–1196 (2006)CrossRefGoogle Scholar
  108. 108.
    Oliveri, C.G., Ulmann, P.A., Wiester, M.J., Mirkin, C.A.: Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. Acc. Chem. Res. 41, 1618–1629 (2008)CrossRefPubMedGoogle Scholar
  109. 109.
    Takeuchi, M., Ikeda, M., Sugasaki, A., Shinkai, S.: Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. Acc. Chem. Res. 34, 865–873 (2001)CrossRefPubMedGoogle Scholar
  110. 110.
    Kovbasyuk, L., Krämer, R.: Allosteric supramolecular receptors and catalysts. Chem. Rev. 104, 3161–3187 (2004)CrossRefPubMedGoogle Scholar
  111. 111.
    von Krbek, L.K.S., Schalley, C.A., Thordarson, P.: Assessing cooperativity in supramolecular systems. Chem. Soc. Rev. 46, 2622–2637 (2017)CrossRefGoogle Scholar
  112. 112.
    Thomas, III. S.W., Joly, G.D., Swager, T.M.: Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007)CrossRefPubMedGoogle Scholar
  113. 113.
    Rochat, S., Swager, T.M.: Conjugated amplifying polymers for optical sensing applications. ACS Appl. Mater. Interfaces 5, 4488–4502 (2013)CrossRefPubMedGoogle Scholar
  114. 114.
    Conners, K.A.: Binding Constants. Wiley, New York (1987)Google Scholar
  115. 115.
    Marsella, M.J., Swager, T.M.: Designing conducting polymer-based sensors: selective ionochromic response in crown ether containing polythiophenes. J. Am. Chem. Soc. 115, 12214–12215 (1993)CrossRefGoogle Scholar
  116. 116.
    Fukuhara, G., Inoue, Y.: Chirality-sensing binaphthocrown ether-polythiophene conjugate. Chem. Eur. J. 16, 7859–7864 (2010)CrossRefPubMedGoogle Scholar
  117. 117.
    Sakai, R., Okade, S., Barasa, E.B., Kakuchi, R., Ziabka, M., Umeda, S., Tsuda, K., Satoh, T., Kakuchi, T.: Efficient colorimetric anion detection based on positive allosteric system of urea-functionalized poly(pheneylacetylene) receptor. Macromolecules 43, 7406–7411 (2010)CrossRefGoogle Scholar
  118. 118.
    Fukuhara, G., Inoue, Y.: Chirality sensing by a fluorescent binaphthocrown ether–polythiophene conjugate. Chem. Commun. 48, 1641–1643 (2012)CrossRefGoogle Scholar
  119. 119.
    Montalti, M., Credi, A., Prodi, L., Gandolfi, A.T.: Handbook of Photochemistry. CRC Press, Boca Raton (2006)Google Scholar
  120. 120.
    Fukuhara, G., Inoue, Y.: Peptide chirality sensing by a cyclodextrin-polythiophene conjugate. Chem. Eur. J. 18, 11459–11464 (2012)CrossRefPubMedGoogle Scholar
  121. 121.
    Ishida, Y., Fukuhara, G.: Efficient cleavage of permethylated cyclodextrins. ACS Omega 3, 6279–6282 (2018)CrossRefGoogle Scholar
  122. 122.
    Zhai, L., Pilston, R.L., Zaiger, K.L., Stokes, K.K., McCullough, R.D.: A simple method to generate side-chain derivatives of regioregular polythiophene via the GRIM metathesis and post-polymerization functionalization. Macromolecules 36, 61–64 (2003)CrossRefGoogle Scholar
  123. 123.
    James, T.D., Sandanayake, K.R.A.S., Shinaki, S.: Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374, 345–347 (1995)CrossRefGoogle Scholar
  124. 124.
    Yashima, E., Nimura, T., Matsushima, T., Okamoto, Y.: Poly((4-dihydroxyborophenyl)acetylene) as a novel probe for chirality and structural assignments of various kinds of molecules including carbohydrates and steroids by circular dichroism. J. Am. Chem. Soc. 118, 9800–9801 (1996)CrossRefGoogle Scholar
  125. 125.
    Samoei, G.K., Wang, W., Escobedo, J.O., Xu, X., Schneider, H.-J., Cook, R.L., Strongin, R.M.: A chemomechanical polymer that functions in blood plasma with high glucose selectivity. Angew. Chem. Int. Ed. 45, 5319–5322 (2006)CrossRefGoogle Scholar
  126. 126.
    Yang, X., Lee, M.-C., Sartain, F., Pan, X., Lowe, C.R.: Designed boronate ligands for glucose-selective holographic sensors. Chem. Eur. J. 12, 8491–8497 (2006)CrossRefPubMedGoogle Scholar
  127. 127.
    Schiller, A., Wessling, R.A., Singaram, B.: A fluorescent sensor array for saccharides based on boronic acid appended bipyridinium salts. Angew. Chem. Int. Ed. 46, 6457–6459 (2007)CrossRefGoogle Scholar
  128. 128.
    Pal, A., Bérubé, M., Hall, D.G.: Design, synthesis, and screening of a library of peptidyl bis(boroxoles) as oligosaccharide receptors in water: identification of a receptor for the tumor marker TF-antigen disaccharide. Angew. Chem. Int. Ed. 49, 1492–1495 (2010)CrossRefGoogle Scholar
  129. 129.
    Kobayashi, K., Asakawa, Y., Kato, Y., Aoyama, Y.: Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity: importance of guest-host CH–π interaction. J. Am. Chem. Soc. 114, 10307–10313 (1992)CrossRefGoogle Scholar
  130. 130.
    Schmuck, C., Schwegmann, M.: Recognition of anionic carbohydrates by an artificial receptor in water. Org. Lett. 7, 3517–3520 (2005)CrossRefPubMedGoogle Scholar
  131. 131.
    Mazik, M., Cavga, H.: Carboxylate-based receptors for the recognition of carbohydrates in organic and aqueous media. J. Org. Chem. 71, 2957–2963 (2006)CrossRefPubMedGoogle Scholar
  132. 132.
    Waki, M., Abe, H., Inouye, M.: Translation of mutarotation into induced circular dichroims signals through helix inversion of host polymers. Angew. Chem. Int. Ed. 46, 3059–3061 (2007)CrossRefGoogle Scholar
  133. 133.
    Goto, H., Furusho, Y., Yashima, E.: Double helical oligoresorcinols specifically recognize oligosaccharides via heteroduplex formation through noncovalent interactions in water. J. Am. Chem. Soc. 129, 9168–9174 (2007)CrossRefPubMedGoogle Scholar
  134. 134.
    Ferrand, Y., Crump, M.P., Davis, A.P.: A synthetic lectin analog for biomimetic disaccharide recognition. Science 318, 619–622 (2007)CrossRefPubMedGoogle Scholar
  135. 135.
    Ke, C., Destecroix, H., Crump, M.P., Davis, A.P.: A simple and accessible synthetic lectin for glucose recognition and sensing. Nat. Chem. 4, 718–723 (2012)CrossRefPubMedGoogle Scholar
  136. 136.
    Mooibroek, T.J., Casas-Solvas, J.M., Harniman, R.L., Renney, C.M., Carter, T.S., Crump, M.P., Davis, A.P.: A threading receptor for polysaccharides. Nat. Chem. 8, 69–74 (2016)CrossRefPubMedGoogle Scholar
  137. 137.
    Renney, C.M., Fukuhara, G., Inoue, Y., Davis, A.P.: Binding or aggregation? hazards of interpretation in studies of molecular recognition by porphyrins in water. Chem. Commun. 51, 9551–9554 (2015)CrossRefGoogle Scholar
  138. 138.
    Davis, A.P.: Synthetic lectins. Org. Biomol. Chem. 7, 3629–3638 (2009)CrossRefPubMedGoogle Scholar
  139. 139.
    Mazik, M.: Recent developments in the molecular recognition of carbohydrates by artificial receptors. RSC Adv. 2, 2630–2642 (2012)CrossRefGoogle Scholar
  140. 140.
    Deslandes, Y., Marchessault, R.H., Sarko, A.: Triple-helical structure of (1→3)-β-d-glucan. Macromolecules 13, 1466–1471 (1980)CrossRefGoogle Scholar
  141. 141.
    Numata, M., Shinkai, S.: ‘Supramolecular wrapping chemistry’ by helix-forming polysaccharides: a powerful strategy for generating diverse polymeric nano-architectures. Chem. Commun. 47, 1961–1975 (2011)CrossRefGoogle Scholar
  142. 142.
    Ogawa, K., Miyagi, M., Fukumoto, T., Watanabe, T.: Effect of 2-chloroethanol, dioxane, or water on the conformation of a gel-forming β-1,3-d-glucan in DMSO. Chem. Lett. 2, 943–946 (1973)CrossRefGoogle Scholar
  143. 143.
    Sakurai, K., Shinkai, S.: Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide: Schizophyllan. J. Am. Chem. Soc. 122, 4520–4521 (2000)CrossRefGoogle Scholar
  144. 144.
    Kimura, T., Koumoto, K., Sakurai, K., Shinkai, S.: Polysaccharide-polynucleotide complexes (III): a novel interaction between the β-1,3-glucan family and the single-stranded RNA poly(C). Chem. Lett. 29, 1242–1243 (2000)CrossRefGoogle Scholar
  145. 145.
    Fukuhara, G., Inoue, Y.: Oligosaccharide sensing with chromophore-modified curdlan in aqueous media. Chem. Commun. 46, 9128–9130 (2010)CrossRefGoogle Scholar
  146. 146.
    Results for the structural conversion of DABz-Cur will be published elsewhereGoogle Scholar
  147. 147.
    Eleftheriadou, I., Grigoropoulou, P., Katsilambros, N., Tentolouris, N.: The effects of medications used for the management of diabetes and obesity on postprandial lipid metabolism. Curr. Diabetes Rev. 4, 340–356 (2008)CrossRefPubMedGoogle Scholar
  148. 148.
    Fukuhara, G., Sasaki, M., Numata, M., Mori, T., Inoue, Y.: Oligosaccharide sensing in aqueous media by porphyrin-curdlan conjugates: a prêt-á-porter rather than haute-couture approach. Chem. Eur. J. 23, 11272–11278 (2017)CrossRefPubMedGoogle Scholar
  149. 149.
    Fukuhara, G., Inoue, Y.: Highly selective oligosaccharide sensing by a curdlan–polythiophene hybrid. J. Am. Chem. Soc. 133, 768–770 (2011)CrossRefPubMedGoogle Scholar
  150. 150.
    Haraguchi, S., Tsuchiya, Y., Shiraki, T., Sugikawa, K., Sada, K., Shinkai, S.: On the helical motif of the complexes created by association of helix-forming schizophyllan (SPG) and helix-forming polythiophene derivatives. Chem. Eur. J. 15, 11221–11228 (2009)CrossRefPubMedGoogle Scholar
  151. 151.
    Fukuhara, G., Imai, M., Fuentealba, D., Ishida, Y., Kurohara, H., Yang, C., Mori, T., Uyama, H., Bohne, C., Inoue, Y.: Electrostatically promoted dynamic hybridization of glucans with cationic polythiophene. Org. Biomol. Chem. 14, 9741–9750 (2016)CrossRefPubMedGoogle Scholar
  152. 152.
    Rekharsky, M.V., Mori, T., Yang, C., Ko, Y.H., Selvapalam, N., Kim, H., Sobransingh, D., Kaifer, A.E., Liu, S., Isaacs, L., Chen, W., Moghaddam, S., Gilson, M.K., Kim, K., Inoue, Y.: A synthetic host–guest system achieves avidin-biotin affinity by overcoming enthalpy-entropy compensation. Proc. Natl Acad. Sci. U.S.A. 104, 20737–20742 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Carr, R., Evans, N.H., Parker, D.: Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. Chem. Soc. Rev. 41, 7673–7686 (2012)CrossRefPubMedGoogle Scholar
  154. 154.
    Tanaka, H., Inoue, Y., Mori, T.: Circularly polarized luminescence and circular dichroisms in small organic molecules: correlation between excitation and emission dissymmetry factors. ChemPhotoChem. 2, 386–402 (2018)CrossRefGoogle Scholar
  155. 155.
    Sagara, Y., Kato, T.: Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 1, 605–610 (2009)CrossRefPubMedGoogle Scholar
  156. 156.
    Sagara, Y., Tamaoki, N., Fukuhara, G.: Cyclophane-based fluorescence tuning induced by hydrostatic pressure changes. ChemPhotoChem. 2, 959–963 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryTokyo Institute of TechnologyTokyoJapan
  2. 2.JST, PRESTOKawaguchiJapan

Personalised recommendations