Advertisement

Inclusion complex of Tramadol in β-cyclodextrin enhances fluorescence by preventing self-quenching

  • Salima Zidane
  • Amor Maiza
  • Hocine Bouleghlem
  • Bernard Fenet
  • Yves ChevalierEmail author
Original Article
  • 42 Downloads

Abstract

Fluorescence self-quenching occurs at high concentration. Inhibition of self-quenching by inclusion of fluorescence emitters inside the hydrophobic cavity of β-cyclodextrin (β-CD) has been addressed taking the example of the fluorescence behavior of Tramadol hydrochloride. Indeed complexation by β-CD enhanced fluorescence emission of Tramadol under conditions where self-quenching was operative. A quantitative account of self-quenching and its inhibition by β-CD was done through determination of complexation equilibrium by 1H NMR experiments and a detailed study of absorption and fluorescence properties. Tramadol and β-CD associate as a complex of 1:1 stoichiometry with a formation constant K11 = 260. Complexation of Tramadol by β-CD does not cause modification of its absorbance and fluorescence spectra. Fluorescence self-quenching of Tramadol above ∼ 1 mmol·L−1 was characterized by a Stern–Volmer constant K = 810 L·mol−1. Inhibition of self-quenching by formation of an inclusion complex was manifested by lower Stern–Volmer constants in the presence of β-CD. Such study required a correct account of Inner Filter Effects on fluorescence, which is mandatory in all physicochemical studies using fluorescence where concentrations are rather high.

Graphical abstract

Keywords

Fluorescence β-Cyclodextrin Tramadol Quenching 

Notes

Supplementary material

10847_2018_874_MOESM1_ESM.docx (270 kb)
Supplementary material 1 (DOCX 270 KB)

References

  1. 1.
    Frankewich, R.P., Thimmaiah, K.N., Hinze, W.L.: Evaluation of the relative effectiveness of different water-soluble β-cyclodextrin media to function as fluorescence enhancement agents. Anal. Chem. 63, 2924–2933 (1991)CrossRefGoogle Scholar
  2. 2.
    Bortolus, P., Monti, S.: Photochemistry in cyclodextrin cavities. Adv. Photochem. 21, 1–133 (1996)Google Scholar
  3. 3.
    Ramamurthy, V., Eaton, D.F.: Photochemistry and photophysics within cyclodextrin cavities. Acc. Chem. Res. 21, 300–306 (1988)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Tang, B.Z.: Restricted intramolecular rotations: a mechanism for aggregation-induced emission. In: Qin, A., Tang, B.Z. Aggregation-Induced Emission, pp. 307–322. Wiley, Chichester (2014)Google Scholar
  5. 5.
    Hwang, H., Kim, H., Myong, S.: Protein induced fluorescence enhancement as a single molecule assay with short distance sensitivity. Proc. Natl Acad. Sci. USA 108, 7414–7418 (2011)CrossRefGoogle Scholar
  6. 6.
    Peccati, F., Hernando, J., Blancafort, L., Solans-Monfort, X., Sodupe, M.: Disaggregation-induced fluorescence enhancement of NIAD-4 for the optical imaging of amyloid-β fibrils. Phys. Chem. Chem. Phys. 17, 19718–19725 (2015)CrossRefGoogle Scholar
  7. 7.
    Xu, J.-L., Quan, Y., Li, Q.-Y., Lu, H., Wu, H., Yin, J., Wang, X.-J., Zhang, Q.: Significant emission enhancement of a bolaamphiphile with salicylaldehyde azine moiety induced by the formation of [2]pseudorotaxane with γ-cyclodextrin. RSC Adv. 5, 88176–88180 (2015)CrossRefGoogle Scholar
  8. 8.
    Deng, S.-L., Huang, P.-C., Lin, L.-Y., Yang, D.-J., Hong, J.-L.: Complex from ionic β-cyclodextrin polyrotaxane and sodium tetraphenylthiophenesulfonate: restricted molecular rotation and aggregation-enhanced emission. RSC Adv. 5, 19512–19519 (2015)CrossRefGoogle Scholar
  9. 9.
    Sbai, M., Lyazidi, S.A., Lerner, D.A., del Castillo, B., Martin, M.A.: Modified β-cyclodextrins as enhancers of fluorescence emission of carbazole alkaloid derivatives. Anal. Chim. Acta 303, 47–55 (1995)CrossRefGoogle Scholar
  10. 10.
    Sbai, M., Lyazidi, S.A., Lerner, D.A., del Castillo, B., Martin, M.A.: Stoichiometry and association constants of the inclusion complexes of ellipticine with modified β-cyclodextrin. Analyst 121, 1561–1564 (1996)CrossRefGoogle Scholar
  11. 11.
    Shuang, S.-M., Guo, S.-Y., Li, L., Cai, M.-Y., Pan, J.-H.: β-Cyclodextrin derivatives as fluorescence enhancers of the drug, hesperidin. Anal. Lett. 31, 1357–1366 (1998)CrossRefGoogle Scholar
  12. 12.
    Galian, R.E., Veglia, A.V.: Fluorescence quenching inhibition of substituted indoles by neutral and ionized cyclodextrins nanocavities. J. Photochem. Photobiol. A 187, 356–362 (2007)CrossRefGoogle Scholar
  13. 13.
    Oddy, F.E., Brovelli, S., Stone, M.T., Klotz, E.J.F., Cacialli, F., Anderson, H.L.: Influence of cyclodextrin size on fluorescence quenching in conjugated polyrotaxanes by methyl viologen in aqueous solution. J. Mater. Chem. 19, 2846–2852 (2009)CrossRefGoogle Scholar
  14. 14.
    Bracamonte, A.G., Veglia, A.V.: Cyclodextrins nanocavities effects on basic and acid fluorescence quenching of hydroxy-indoles. J. Photochem. Photobiol. A 261, 20–25 (2013)CrossRefGoogle Scholar
  15. 15.
    Vazzana, M., Andreani, T., Fangueiro, J., Faggio, C., Silva, C., Santini, A., Garcia, M.L., Silva, A.M., Souto, E.B.: Tramadol hydrochloride: pharmacokinetics, pharmacodynamics, adverse side effects, co-administration of drugs and new drug delivery systems. Biomed. Pharmacother. 70, 234–238 (2015)CrossRefGoogle Scholar
  16. 16.
    Grond, S., Sablotzki, A.: Clinical pharmacology of tramadol. Clin. Pharmacokinet. 43, 879–923 (2004)CrossRefGoogle Scholar
  17. 17.
    Bamigbade, T.A., Davidson, C., Langford, R.M., Stamford, J.A.: Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. Brit. J. Anaesth. 79, 352–356 (1997)CrossRefGoogle Scholar
  18. 18.
    Hennies, H.H., Friderichs, E., Schneider, J.: Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Arzneim.-Forsch. 38, 877–880 (1988)Google Scholar
  19. 19.
    Reimann, W., Hennies, H.-H.: Inhibition of spinal noradrenaline uptake in rats by the centrally acting analgesic tramadol. Biochem. Pharmacol. 47, 2289–2293 (1994)CrossRefGoogle Scholar
  20. 20.
    Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)CrossRefGoogle Scholar
  21. 21.
    Bilensoy, E. (ed.): Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine, Current and Future Industrial Applications. Wiley, Hoboken (2011)Google Scholar
  22. 22.
    Stella, V.J., Rao, V.M., Zannou, E.A., Zia, V.: Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 36, 3–16 (1999)CrossRefGoogle Scholar
  23. 23.
    Duchêne, D., Bochot, A., Yu, S.-C., Pépin, C., Seiller, M.: Cyclodextrins and emulsions. Int. J. Pharm. 266, 85–90 (2003)CrossRefGoogle Scholar
  24. 24.
    Yu, S.-C., Bochot, A., Le Bas, G., Chéron, M., Mahuteau, J., Grossiord, J.-L., Seiller, M., Duchêne, D.: Effect of camphor/cyclodextrin complexation on the stability of O/W/O multiple emulsions. Int. J. Pharm. 261, 1–8 (2003)CrossRefGoogle Scholar
  25. 25.
    Anton Smith, A., Manavalan, R., Kannan, K., Rajendiran, N.: Spectral characteristics of tramadol in different solvents and β-cyclodextrin. Spectrochim. Acta A 74, 469–477 (2009)CrossRefGoogle Scholar
  26. 26.
    Box, K.J., Comer, J.E.A.: Using measured pKa, LogP and solubility to investigate supersaturation and predict BCS class. Curr. Drug Metab. 9, 869–878 (2008)CrossRefGoogle Scholar
  27. 27.
    Schneider, H.-J., Hacket, F., Rüdiger, V.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)CrossRefGoogle Scholar
  28. 28.
    Smyj, R., Wang, X.-P., Han, F.: Tramadol hydrochloride. Profil. Drug Subst. Excip. Relat. Methodol. 38, 463–494 (2013)CrossRefGoogle Scholar
  29. 29.
    Wood, D.J., Hruska, F.E., Saenger, W.: 1H NMR study of the inclusion of aromatic molecules in α-cyclodextrin. J. Am. Chem. Soc. 99, 1735–1740 (1977)CrossRefGoogle Scholar
  30. 30.
    Salvatierra, D., Jaime, C., Virgili, A., Sánchez-Ferrando, F.: Determination of the inclusion geometry for the β-cyclodextrin/benzoic acid complex by NMR and molecular modeling. J. Org. Chem. 61, 9578–9581 (1996)CrossRefGoogle Scholar
  31. 31.
    Valeur, B., Berberan-Santos, M.N.: Molecular Fluorescence: Principles and Applications, 2nd edn., p. 69. Wiley-VCH, Weinheim (2012)CrossRefGoogle Scholar
  32. 32.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn., pp. 55–56. Springer, New York (2006)CrossRefGoogle Scholar
  33. 33.
    MacDonald, B.C., Lvin, S.J., Patterson, H.: Correction of fluorescence inner filter effects and the partitioning of pyrene to dissolved organic carbon. Anal. Chim. Acta 338, 155–162 (1997)CrossRefGoogle Scholar
  34. 34.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn., pp. 277–284. Springer, New York (2006)CrossRefGoogle Scholar
  35. 35.
    Arad-Yellin, R., Eaton, D.F.: Excited-state reactivity changes induced by complexation with cyclodextrins: Inclusion of 2,2-bis(α-naphthylmethyl)-1,3-dithiane into β- and γ-cyclodextrins. J. Phys. Chem. 87, 5051–5055 (1983)CrossRefGoogle Scholar
  36. 36.
    Valeur, B., Berberan-Santos, M.N.: Molecular Fluorescence: Principles and Applications, 2nd edn., pp. 213–261. Wiley, Weinheim (2012)CrossRefGoogle Scholar
  37. 37.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn., pp. 331–351. Springer, New York (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratoire d’Électrochimie, Ingénierie Moléculaire et Catalyse Redox (LEIMCR)University Farhat AbbasSétifAlgeria
  2. 2.University of Lyon, Laboratoire d’Automatique et de Génie des Procédés (LAGEP), UMR 5007 CNRS - University Claude Bernard Lyon 1VilleurbanneFrance
  3. 3.Laboratoire de Chimie Organique Appliquée (LCOA), Groupe de Chimie Bioorganique, Faculty of Sciences, Department of ChemistryUniversity Badji-MokhtarAnnabaAlgeria
  4. 4.University of Lyon, Centre Commun de RMN, University Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations