Advertisement

Encapsulation of plumbagin using cyclodextrins to enhance plumbagin stability: computational simulation, preparation, characterization, and application

  • Nathasak Sinlikhitkul
  • Pisanu Toochinda
  • Luckhana Lawtrakul
  • Pranporn Kuropakornpong
  • Arunporn Itharat
Original Article
  • 21 Downloads

Abstract

Encapsulation of plumbagin using cyclodextrins (CDs), including α-cyclodextrin (αCD), β-cyclodextrin (βCD), and γ-cyclodextrin (γCD) to form inclusion complexes was investigated to prevent the loss of plumbagin in pharmaceutical and nutraceutical products. Computational simulations and phase solubility studies suggest that the complex formations of plumbagin with CDs are possible. βCD is chosen, as it has the lowest price and can form the complex in a wide concentration range with 1:1 host–guest molar ratio. Two techniques of the complex formation, co-precipitation and freeze-drying, were evaluated for both pure plumbagin and extracted plumbagin from Plumbago indica root to represent lab-scale and industrial-scale productions, respectively. The complexes from these two techniques can prevent the loss of plumbagin up to three-folds better than plumbagin in free form. The preservation by encapsulation can increase the remaining plumbagin from 22.68 to 60.26% after exposure at 50 °C for 6 weeks.

Keywords

Encapsulation Inclusion complex Plumbagin Cyclodextrins 

Notes

Acknowledgements

This study was financial supported by the Tobacco Authority of Thailand and the scholarship for the Excellent Thai Student (ETS) of Sirindhorn International Institute of Technology (SIIT), Thammasat University. The authors gratefully acknowledge the Center of Scientific Equipment for Advanced Research, Thammasat University (TUCSEAR) for providing an access to the analytical instruments.

References

  1. 1.
    Padhye, S., Dandawate, P., Yusufi, M., Ahmad, A., Sarkar, F.: Perspectives on medicinal properties of plumbagin and its analogs. Med. Res. Rev. 32, 1131–1158 (2012)CrossRefGoogle Scholar
  2. 2.
    Gangopadhyay, M., Sircar, D., Mitra, A., Bhattacharya, S.: Hairy root culture of Plumbago indica as a potential source for plumbagin. Biol. Plant. 52, 533–537 (2008)CrossRefGoogle Scholar
  3. 3.
    Rattarom, R., Sakpakdeejaroen, I., Itharat, A.: Cytotoxic effects of the ethanolic extract from Benjakul formula and its compounds on human lung cancer cells. Thai J. Pharmacol. 32, 99–101 (2010)Google Scholar
  4. 4.
    Kaewbumrung, S., Panichayupakaranant, P.: Antibacterial activity of plumbagin derivative-rich Plumbago indica root extracts and chemical stability. Nat. Prod. Res. 28, 835–837 (2014)CrossRefGoogle Scholar
  5. 5.
    Kuo, P.-L., Hsu, Y.-L., Cho, C.-Y.: Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol. Cancer Ther. 5, 3209–3221 (2006)CrossRefGoogle Scholar
  6. 6.
    Checker, R., Sharma, D., Sandur, S.K., Khanam, S., Poduval, T.B.: Anti-inflammatory effects of plumbagin are mediated by inhibition of NF-kappaB activation in lymphocytes. Int. Immunopharmacol. 9, 949–958 (2009)CrossRefGoogle Scholar
  7. 7.
    Tilak, J.C., Adhikari, S., Devasagayam, T.P.: a: Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Redox Rep. 9, 219–227 (2004)CrossRefGoogle Scholar
  8. 8.
    Sharma, I., Gusain, D., Dixit, V.P.: Hypolipidaemic and antiatherosclerotic effects of plumbagin in rabbits. Indian J. Physiol. Pharmacol. 35, 10–14 (1991)CrossRefGoogle Scholar
  9. 9.
    Pinho, E., Grootveld, M., Soares, G., Henriques, M.: Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 101, 121–135 (2014)CrossRefGoogle Scholar
  10. 10.
    Popielec, A., Loftsson, T.: Effects of cyclodextrins on the chemical stability of drugs. Int. J. Pharm. 531, 532–542 (2017)CrossRefGoogle Scholar
  11. 11.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)CrossRefGoogle Scholar
  12. 12.
    Koontz, J.L., Marcy, J.E., Barbeau, W.E., Duncan, S.E.: Stability of natamycin and its cyclodextrin inclusion complexes in aqueous solution. J. Agric. Food Chem. 51, 7111–7114 (2003)CrossRefGoogle Scholar
  13. 13.
    Bhandari, B.R., D’Arcy, B.R., Padukka, I.: Encapsulation of lemon oil by paste method using β-cyclodextrin: encapsulation efficiency and profile of oil volatiles. J. Agric. Food Chem. 47, 5194–5197 (1999)CrossRefGoogle Scholar
  14. 14.
    Mourtzinos, I., Salta, F., Yannakopoulou, K., Chiou, A., Karathanos, V.T.: Encapsulation of olive leaf extract in β-cyclodextrin. J. Agric. Food Chem. 55, 8088–8094 (2007)CrossRefGoogle Scholar
  15. 15.
    Bothiraja, C., Kapare, H.S., Pawar, A.P., Shaikh, K.S.: Development of plumbagin-loaded phospholipid-Tween® 80 mixed micelles: Formulation, optimization, effect on breast cancer cells and human blood/serum compatibility testing. Ther. Deliv. 4, 1247–1259 (2013)CrossRefGoogle Scholar
  16. 16.
    D’Souza, R., Singh, U.V., Aithal, K.S., Udupa, N.: Antifertility activity of niosomal HPβCD-plumbagin complex. Indian J. Pharm. Sci. 60, 36 (1998)Google Scholar
  17. 17.
    Singh, U.V., Udupa, N.: Reduced toxicity and enhanced antitumor efficacy of betacyclodextrin plumbagin inclusion complex in mice bearing Ehrlich ascites carcinoma. Indian J. Physiol. Pharmacol. 41, 171–175 (1997)Google Scholar
  18. 18.
    Oommen, E., Shenoy, B.D., Udupa, N., Kamath, R., Devi, P.U.: Antitumour efficacy of cyclodextrin-complexed and niosome—encapsulated plumbagin in mice bearing melanoma B16F1. Pharm. Pharmacol. Commun. 5, 281–285 (1999)CrossRefGoogle Scholar
  19. 19.
    Sunil Kumar, M.R., Kiran Aithal, B., Udupa, N., Sreenivasulu Reddy, M., Raakesh, V., Murthy, R.S.R., Prudhvi Raju, D., Rao, S.: B.S.: Formulation of plumbagin loaded long circulating pegylated liposomes: In vivo evaluation in C57BL/6J mice bearing B16F1 melanoma. Drug Deliv. 18, 511–522 (2011)CrossRefGoogle Scholar
  20. 20.
    Srihakulung, O., Maezono, R., Toochinda, P., Kongprawechnon, W., Intarapanich, A., Lawtrakul, L.: Host-guest interactions of plumbagin with β-cyclodextrin, dimethyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin: Semi-empirical quantum mechanical PM6 and PM7 methods. Sci. Pharm. 86, 1–11 (2018)CrossRefGoogle Scholar
  21. 21.
    Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gandara, J.: A review on the use of cyclodextrins in foods. Food Hydrocoll. 23, 1631–1640 (2009)CrossRefGoogle Scholar
  22. 22.
    Cravotto, G., Binello, A., Baranelli, E., Carraro, P., Trotta, F.: Cyclodextrins as food additives and in food processing. Curr. Nutr. Food Sci. 2, 343–350 (2006)CrossRefGoogle Scholar
  23. 23.
    Jug, M., Beaeireviae-Laaean, M.: Cyclodextrin-based pharmaceuticals. Radiat. Med. Sci. 499, 9–26 (2008)Google Scholar
  24. 24.
    Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)CrossRefGoogle Scholar
  25. 25.
    Davis, M., Brewster, E.: M.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)CrossRefGoogle Scholar
  26. 26.
    Buschmann, H.-J., Schollmeyer, E.: Applications of cyclodextrins in cosmetic products: a review. J. Cosmet. Sci. 53, 185–191 (2002)Google Scholar
  27. 27.
    Viernstein, H., Weiss-Greiler, P., Wolschann, P.: Solubility enhancement of low soluble biologically active compounds by beta-cyclodextrin and dimethyl-beta-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 44, 235–239 (2002)CrossRefGoogle Scholar
  28. 28.
    Savic, I.M., Savic-Gajic, I.M., Nikolic, V.D., Nikolic, L.B., Radovanovic, B.C., Milenkovic-Andjelkovic, A.: Enhencemnet of solubility and photostability of rutin by complexation with β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 86, 33–43 (2016)CrossRefGoogle Scholar
  29. 29.
    Lo Nostro, P., Fratoni, L., Baglioni, P.: Modification of a cellulosic fabric with β-cyclodextrin for textile finishing applications. J. Incl. Phenom. Macrocycl. Chem. 44, 423–427 (2002)CrossRefGoogle Scholar
  30. 30.
    Layre, A.M., Gosselet, N.M., Renard, E., Sebille, B., Amiel, C.: Comparison of the complexation of cosmetical and pharmaceutical compounds with gamma-cyclodextrin, 2-hydroxypropyl-beta-cyclodextrin and water-soluble beta-cyclodextrin-co-epichlorhydrin polymers. J. Incl. Phenom. Macrocycl. Chem. 43, 311–317 (2002)CrossRefGoogle Scholar
  31. 31.
    Batt, D.K., Garala, K.C.: Preparation and evaluation of inclusion complexes of diacerein with β-cyclodextrin and hydroxypropyl β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 77, 471–481 (2013)CrossRefGoogle Scholar
  32. 32.
    Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014)CrossRefGoogle Scholar
  33. 33.
    Li, S.: Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 92, 1457–1470 (1992)CrossRefGoogle Scholar
  34. 34.
    Hedges, A.R.: Industrial applications of cyclodextrins. Chem. Rev. 98, 2035–2044 (1998)CrossRefGoogle Scholar
  35. 35.
    Allen, F.H.: The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr. B. 58, 380–388 (2002)CrossRefGoogle Scholar
  36. 36.
    Vijayalakshmi, J., Rajan, S.S., Srinivasan, R.: Structure of plumbagin. Acta Crystallogr. C43, 2375–2377 (1987)Google Scholar
  37. 37.
    Chacko, K.K., Saenger, W.: Topography of cyclodextrin inclusion complexes. 15. Crystal and molecular structure of the cyclohexaamylose-7.57 water complex, form III. Four- and six-membered circular hydrogen bonds. J. Am. Chem. Soc. 103, 1708–1715 (1981)CrossRefGoogle Scholar
  38. 38.
    Steiner, T., Koellner, G.: Crystalline β-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. J. Am. Chem. Soc. 116, 5122–5128 (1994)CrossRefGoogle Scholar
  39. 39.
    Harata, K.: The structure of the cyclodextrin complex. XX. Crystal structure of uncomplexed hydrated γ-cyclodextrin. Bull. Chem. Soc. Jpn. 60, 2763–2767 (1987)CrossRefGoogle Scholar
  40. 40.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H.: Gaussian 16 Revision A. 03. 2016. Gaussian Inc., Wallingford (2016)Google Scholar
  41. 41.
    Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009)CrossRefGoogle Scholar
  42. 42.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)CrossRefGoogle Scholar
  43. 43.
    Higuchi, T., Connors, K.A.: Phase solubility technique. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)Google Scholar
  44. 44.
    Wei, Y., Zhang, J., Zhou, Y., Bei, W., Li, Y., Yuan, Q., Liang, H.: Characterization of glabridin/hydroxypropyl-β-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr. Polym. 159, 152–160 (2017)CrossRefGoogle Scholar
  45. 45.
    Tommasini, S., Raneri, D., Ficarra, R., Calabrò, M.L., Stancanelli, R., Ficarra, P.: Improvement in solubility and dissolution rate of flavonoids by complexation with β-cyclodextrin. J. Pharm. Biomed. Anal. 35, 379–387 (2004)CrossRefGoogle Scholar
  46. 46.
    Kapadia, N.S., Isarani, S.A., Shah, M.B.: A simple method for isolation of plumbagin from roots of Plumbago rosea. Pharm. Biol. 43, 551–553 (2005)CrossRefGoogle Scholar
  47. 47.
    Szente, L., Szejtli, J., Kis, G.L.: Spontaneous opalescence of aqueous gamma-cyclodextrin solutions: complex formation or self-aggregation? J. Pharm. Sci. 87, 778–781 (1998)CrossRefGoogle Scholar
  48. 48.
    Sajan, D., Laladhas, K.P., Joe, I.H., Jayakumar, V.S.: Vibrational spectra and density functional theoretical calculations on the antitumor drug, plumbagin. J. Raman Spectrosc. 36, 1001–1011 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of TechnologyThammasat UniversityPathum ThaniThailand
  2. 2.Department of Applied Thai Traditional Medicine, Faculty of MedicineThammasat UniversityPathum ThaniThailand

Personalised recommendations