Synthesis of cyclodextrin–pyrrole conjugates possessing tuneable carbon linkers

  • Jan Lukášek
  • Markéta Řezanková
  • Ivan Stibor
  • Michal ŘezankaEmail author
Original Article


Cyclodextrins are naturally occurring cyclic oligosaccharides consisting of glucose units. The main feature of cyclodextrins is the ability to accommodate various lipophilic compounds in their interior, which determines them to be popular helpers to the mankind. However, there is still a demand for new derivatives for advanced applications. Herein, we report the synthesis of β-cyclodextrin–pyrrole conjugates. Their preparation is based on an amide bond formation or copper(I)-catalysed azide-alkyne cycloaddition between β-cyclodextrin and pyrrole derivatives. The main advantage of the synthetic approach lies in the possibility to attach the substituent in β-position, because polypyrroles possessing a substituent in this position are generally more conductive than the N-substituted ones. Moreover, the presented synthetic route is general and allows tuning the properties (various types of connections and lengths) of a linker. The presented cyclodextrin–pyrrole derivatives thus open the door for new applications in the field of sensors or tissue engineering.


β-Substitution Amide Click chemistry Cyclodextrin Pyrrole 



This work was supported by the Project LO1201 of the Ministry of Education, Youth and Sports in the framework of the targeted support of the “National Programme for Sustainability I” (Lukášek, Stibor, Řezanka); by the Project 16-02316Y of the Czech Science Foundation (Lukášek, Řezanka); and SGS Project No. 21176/115 of the Technical University of Liberec (Lukášek).

Supplementary material

10847_2018_854_MOESM1_ESM.pdf (2.2 mb)
Supplementary data file features copies of NMR (1H, 13C) and HRMS spectra of all new pyrrole derivatives prepared. Supplementary material 1 (PDF 2277 KB)


  1. 1.
    Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S., Sharma, P.: Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 5, 15233–15266 (2015). CrossRefGoogle Scholar
  2. 2.
    Walsh, C.T., Garneau-Tsodikova, S., Howard-Jones, A.R.: Biological formation of pyrroles: nature’s logic and enzymatic machinery. Nat. Prod. Rep. 23, 517–531 (2006). CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Huang, Y., Li, H., Wang, Z., Zhu, M., Pei, Z., Xue, Q., Huang, Y., Zhi, C.: Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy. 22, 422–438 (2016). CrossRefGoogle Scholar
  4. 4.
    Yuan, X., Ding, X.-L., Wang, C.-Y., Ma, Z.-F.: Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ. Sci. 6, 1105–1124 (2013). CrossRefGoogle Scholar
  5. 5.
    Setka, M., Drbohlavova, J., Hubalek, J.: Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sensors. 17, 562 (2017). CrossRefGoogle Scholar
  6. 6.
    Ateh, D.D., Navsaria, H.A., Vadgama, P.: Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interface. 3, 741–752 (2006). CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bendrea, A.-D., Cianga, L., Cianga, I.: Review paper: progress in the field of conducting polymers for tissue engineering applications. J. Biomater. Appl. 26, 3–84 (2011). CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mao, J., Li, C., Park, H.J., Rouabhia, M., Zhang, Z.: Conductive polymer waving in liquid nitrogen. ACS Nano. 11, 10409–10416 (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Izaoumen, N., Bouchta, D., Zejli, H., El Kaoutit, M., Stalcup, A.M., Temsamani, K.R.: Electrosynthesis and analytical performances of functionalized poly (pyrrole/beta-cyclodextrin) films. Talanta. 66, 111–117 (2005). CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shang, F., Zhou, L., Mahmoud, K.A., Hrapovic, S., Liu, Y., Moynihan, H.A., Glennon, J.D., Luong, J.H.T.: Selective nanomolar detection of dopamine using a boron-doped diamond electrode modified with an electropolymerized sulfobutylether-beta-cyclodextrin-doped poly(N-acetyltyramine) and polypyrrole composite film. Anal. Chem. 81, 4089–4098 (2009). CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wajs, E., Fernández, N., Fragoso, A.: Supramolecular biosensors based on electropolymerised pyrrole–cyclodextrin modified surfaces for antibody detection. Analyst. 141, 3274–3279 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Palanisamy, S., Thangavelu, K., Chen, S.-M., Velusamy, V., Chang, M.-H., Chen, T.-W., Al-Hemaid, F.M.A., Ali, M.A., Ramaraj, S.K.: Synthesis and characterization of polypyrrole decorated graphene/beta-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sens. Actuators B. 243, 888–894 (2017). CrossRefGoogle Scholar
  13. 13.
    Řezanka, M.: Monosubstituted cyclodextrins as precursors for further use. Eur. J. Org. Chem. 2016, 5322–5334 (2016). CrossRefGoogle Scholar
  14. 14.
    Řezanka, M.: Synthesis of substituted cyclodextrins. Environ. Chem. Lett. (2018). CrossRefGoogle Scholar
  15. 15.
    Fritea, L., Gorgy, K., Le Goff, A., Audebert, P., Galmiche, L., Sandulescu, R., Cosnier, S.: Fluorescent and redox tetrazine films by host-guest immobilization of tetrazine derivatives within poly(pyrrole-beta-cyclodextrin) films. J. Electroanal. Chem. 781, 36–40 (2016). CrossRefGoogle Scholar
  16. 16.
    Deronzier, A., Moutet, J.C.: Polypyrrole films containing metal complexes: Syntheses and applications. Coord. Chem. Rev. 147, 339–371 (1996). CrossRefGoogle Scholar
  17. 17.
    Trippé, G., Le Derf, F., Lyskawa, J., Mazari, M., Roncali, J., Gorgues, A., Levillain, E., Sallé, M.: Crown-tetrathiafulvalenes attached to a pyrrole or an EDOT unit: synthesis, electropolymerization and recognition properties. Chemistry. 10, 6497–6509 (2004). CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Guernion, N.J.L., Hayes, W.: 3-and 3,4-substituted pyrroles and thiophenes and their corresponding polymers: a review. Curr. Org. Chem. 8, 637–651 (2004). CrossRefGoogle Scholar
  19. 19.
    Jolicoeur, B., Chapman, E.E., Thompson, A., Lubell, W.D.: Pyrrole protection. Tetrahedron. 62, 11531–11563 (2006). CrossRefGoogle Scholar
  20. 20.
    Karsten, S., Nan, A., Turcu, R., Liebscher, J.: A new access to polypyrrole-based functionalized magnetic core-shell nanoparticles. J. Polym. Sci. Part A. 50, 3986–3995 (2012). CrossRefGoogle Scholar
  21. 21.
    Bunrit, A., Sawadjoon, S., Tsupova, S., Sjoberg, P.J.R., Samec, J.S.M.: A general route to beta-substituted pyrroles by transition-metal catalysis. J. Org. Chem. 81, 1450–1460 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huisgen, R.: 1.3-dipolare cycloadditionen-ruckschau und ausblick. Angew. Chem. 75, 604–637 (1963). CrossRefGoogle Scholar
  23. 23.
    Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem.-Int. Ed. 40, 2004–2021 (2001)<2004::AID-ANIE2004>3.0.CO;2-5 CrossRefGoogle Scholar
  24. 24.
    Yadav, J.S., Reddy, B.V.S., Reddy, P.M., Srinivas, C.: Zinc-mediated Barbier reactions of pyrrole and indoles: a new method for the alkylation of pyrrole and indoles. Tetrahedron Lett. 43, 5185–5187 (2002). CrossRefGoogle Scholar
  25. 25.
    Bray, B., Mathies, P., Naef, R., Solas, D., Tidwell, T., Artis, D., Muchowski, J.: N-(triisopropylsilyl)pyrrole: a progenitor par excellence of 3-substituted pyrroles. J. Org. Chem. 55, 6317–6328 (1990). CrossRefGoogle Scholar
  26. 26.
    Sonogashira, K., Tohda, Y., Hagihara, N.: A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 16, 4467–4470 (1975). CrossRefGoogle Scholar
  27. 27.
    Alvarez, A., Guzman, A., Ruiz, A., Velarde, E., Muchowski, J.: Synthesis of 3-arylpyrroles and 3-pyrrolylacetylenes by palladium-catalyzed coupling reactions. J. Org. Chem. 57, 1653–1656 (1992). CrossRefGoogle Scholar
  28. 28.
    Tamao, K., Sumitani, K., Kumada, M.: Selective carbon–carbon bond formation by cross-coupling of grignard-reagents with organic halides-catalysis by nickel-phosphine complexes. J. Am. Chem. Soc. 94, 4374–4376 (1972). CrossRefGoogle Scholar
  29. 29.
    Heravi, M.M., Hajiabbasi, P.: Recent advances in Kumada-Tamao-Corriu cross-coupling reaction catalyzed by different ligands. Monatshefte Chem. 143, 1575–1592 (2012). CrossRefGoogle Scholar
  30. 30.
    Cheung, C.W., Ren, P., Hu, X.: Mild and phosphine-free iron-catalyzed cross-coupling of nonactivated secondary alkyl halides with alkynyl grignard reagents. Org. Lett. 16, 2566–2569 (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ren, P., Vechorkin, O., Csok, Z., Salihu, I., Scopelliti, R., Hu, X.: Pd, Pt, and Ru complexes of a pincer bis(amino)amide ligand. Dalton Trans. 40, 8906–8911 (2011). CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Eckhardt, M., Fu, G.C.: The first applications of carbene ligands in cross-couplings of alkyl electrophiles: sonogashira reactions of unactivated alkyl bromides and iodides. J. Am. Chem. Soc. 125, 13642–13643 (2003). CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Csok, Z., Vechorkin, O., Harkins, S.B., Scopelliti, R., Hu, X.: Nickel complexes of a pincer NN(2) ligand: Multiple carbon-chloride activation of CH(2)Cl(2) and CHCl(3) leads to selective carbon-carbon bond formation. J. Am. Chem. Soc. 130, 8156–8157 (2008). CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Saito, B., Fu, G.C.: Alkyl-alkyl Suzuki cross-couplings of unactivated secondary alkyl halides at room temperature. J. Am. Chem. Soc. 129, 9602–9603 (2007). CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Corey, E.J., Fuchs, P.L.: A synthetic method for formyl→ethynyl conversion (RCHO→RC CH or RC CR′). Tetrahedron Lett. 13, 3769–3772 (1972). CrossRefGoogle Scholar
  36. 36.
    Kornblum, N., Jones, W., Anderson, G.: A new and selective method of oxidation. The conversion of alkyl halides and alkyl tosylates to aldehydes. J. Am. Chem. Soc. 81, 4113–4114 (1959). CrossRefGoogle Scholar
  37. 37.
    Dave, P., Byun, H., Engel, R.: An improved direct oxidation of alkyl-halides to aldehydes. Synth. Commun. 16, 1343–1346 (1986). CrossRefGoogle Scholar
  38. 38.
    Tang, W., Ng, S.-C.: Facile synthesis of mono-6-amino-6-deoxy-α-, β-, γ-cyclodextrin hydrochlorides for molecular recognition, chiral separation and drug delivery. Nat. Protoc. 3, 691–697 (2008). CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chmurski, K., Stepniak, P., Jurczak, J.: Improved synthesis of C2 and C6 monoderivatives of alpha- and beta-cyclodextrin via the click chemistry approach. Synthesis. 47, 1838–1843 (2015). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and InnovationTechnical University of LiberecLiberecCzech Republic
  2. 2.Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary StudiesTechnical University of LiberecLiberecCzech Republic
  3. 3.Department of Organic ChemistryUniversity of Chemistry and Technology, PraguePrague 6Czech Republic

Personalised recommendations