Advertisement

Binding, and thermodynamics of β-cyclodextrin inclusion complexes with some coumarin laser dyes and coumarin-based enzyme substrates: a simulation study

  • M. S. A. Abdel-Mottaleb
  • E. Hamed
  • M. Saif
  • Hoda S. Hafez
Original Article
  • 88 Downloads

Abstract

This paper addresses modelling the nature of interactions between β-CD and some coumarins including recently reported novel sulphur analogues to form inclusion complexes of appealing medicinal, photochemical and photophysical properties. The binding energy and the total stabilization energy (EONIOM) are used to confirm the most favorable inclusion complex structure. Thermodynamic parameters reveal exothermic inclusion reaction in gas phase. Thermal stability of fluorescent enzyme substrate of coumarin nucleus increases in the order: gas < cyclohexane < water, indicating better stability in water. Furthermore, molecular characteristics such as optimized geometries, MO’s and electrostatic potential energy map surfaces and energies are reported and correlated with some reactivity indices. Our results validated the experimentally available data reported in the literature. Inclusion complexes of β-CD with coumarins should result in improving its laser efficiency in environmentally benign aqueous medium.

Keywords

Coumarins β-Cyclodextrin DFT ONIOM 

Notes

Funding

This study was funded by Ain Shams University.

References

  1. 1.
    Abdel-Mottaleb, M.S.A., El-Sayed, B.A., Abo-Aly, M.M., El-Kady, M.Y.: Fluorescence properties and excited state interactions of 7-hydroxy-4-methylcoumarin laser dye. J. Photochem. Photobiol. A 46, 379–390 (1989)CrossRefGoogle Scholar
  2. 2.
    McCarthy, P.K., Blanchard, G.J.: AM1 study of the electronic structure of coumarins. J. Phys. Chem. 97, 12205–12209 (1993)CrossRefGoogle Scholar
  3. 3.
    Moylan, C.R.: Molecular hyperpolarizabilities of coumarin dyes. J. Phys. Chem. 98, 13513–13516 (1994)CrossRefGoogle Scholar
  4. 4.
    Jones, G., Jimenez, J.A.C.: Azole-linked coumarin dyes as fluorescence probes of domain-forming polymers. J. Photochem. Photobiol. B 65, 5–12 (2001)CrossRefGoogle Scholar
  5. 5.
    BangarRaju, B., Costa, S.M.B., Excited-state behavior of 7 diethylaminocoumarin dyes in AOT reversed micelles. Size effects. J. Phys. Chem. B 103, 4309–4312 (1999)Google Scholar
  6. 6.
    Kaholek, M., Hrdovie, P., Spectral properties of coumarin derivatives substituted at position 3. Effect of polymer matrix. J. Photochem. Photobiol. A 108, 283–288 (1997)CrossRefGoogle Scholar
  7. 7.
    Moriya, T.: Excited-state reactions of coumarins in aqueous solutions. III. The fluorescence quenching of 7-ethoxycoumarins by the chloride ion in acidic solutions. Bull. Chem. Soc. Jpn. 59, 961–968 (1986)CrossRefGoogle Scholar
  8. 8.
    Kumar, S., Giri, R., Machwe, M.K.: Effect of substituent on intramolecular charge transfer and excited state dipole moments of amino coumarins. Ind. J. Pure Appl. Phys. 36, 622–626 (1998)Google Scholar
  9. 9.
    Nielsen, B.E.: Coumarins patterns in the Umbrelliferae. In: Heywood, V.H. (ed.) The Biology and Chemistry of the Umbrelliferae, p. 325. Academic Press, London (1971)Google Scholar
  10. 10.
    Ammar, H.O., Ghorab, M., Nahhal, S.A., Makram, T.S.: Interaction of oral anticoagulants with methyl xanthines. Pharmazie 52 (1997) 946–950Google Scholar
  11. 11.
    Kam, C.M., Kerrigan, J.E., Plaskon, R.R., Duffy, E.J., Lollar, P., Suddath, F.L., Powers, J.C.J., Suddath, F.L., Powers, J.C.: Mechanism-based isocoumarin inhibitors for blood coagulation serine proteases. Effect of the 7-substituent in 7-amino-4-chloro-3-(isothioureidoalkoxy) isocoumarins on inhibitory and anticoagulant potency. Med. Chem 37, 1298–1306 (1994)CrossRefGoogle Scholar
  12. 12.
    Yamada, Y., Okamoto, M., Kikuzaki, H., Nakatani, N.: Spasmolytic activity of aurapten analogs. Biosci. Biotechnol. Biochem. 61, 740–742 (1997)CrossRefGoogle Scholar
  13. 13.
    Rosskopt, F., Kraus, J., Franz, G.: Immunological and antitumor effects of coumarin and some derivatives. Pharmazie 47, 139–142 (1992)Google Scholar
  14. 14.
    McCulloch, P., George, W.D.: Warfarin inhibits metastasis of Mtln3 rat mammary carcinoma without affecting primary tumor growth. Br. J. Cancer 59, 179–183 (1989)CrossRefPubMedGoogle Scholar
  15. 15.
    Lazarova, G., Kostova, I., Neychev, H.: Photodynamic damage prevention by some hydroxycoumarins. Fitoterapia 64, 134–146 (1993)Google Scholar
  16. 16.
    Matolcsy, G., Nadasy, M., Andriska, V.: Pesticide Chemistry; Studies in Environmental Science, vol. 32. Elsevier, Budapest, (1988)Google Scholar
  17. 17.
    Pavlopoulos, T.G.: Influence of solvent on spectral and stimulated emission characteristics of iminocoumarin laser dyes. IEEE J. Quantum Electron. 9(5), 510–513 (1973)CrossRefGoogle Scholar
  18. 18.
    Zinsli, P.E., Investigation of rate parameters in chemical reactions of excited hydroxycoumarins in different solvents. J. Photochem. 3, 55–69 (1974/1975)CrossRefGoogle Scholar
  19. 19.
    Schulman, S.G., Rosenberg, L.: Tautomerization kinetics of 7-hydroxy-4-methylcoumarin in the lowest excited singlet state. J. Phys. Chem. 83(4), 447–451 (1979) 3 )CrossRefGoogle Scholar
  20. 20.
    Moriya, T.: Excited-state reactions of coumarins in aqueous solutions. I. The phototautomerization of 7-hydroxycoumarin and its derivative. Bull. Chem. Soc. Jpn. 56, 6–14 (1983)CrossRefGoogle Scholar
  21. 21.
    Moriya, T.: Excited-state reactions of coumarins. VII. The solvent-dependent fluorescence of 7-hydroxycoumarins. Bull. Chem. Soc. Jpn. 61, 1873–1886 (1988)CrossRefGoogle Scholar
  22. 22.
    De Silva, N., Minezawa, N., Gordon, M.S.: Excited-state hydrogen atom transfer reaction in solvated 7-Hydroxy-4-methylcoumarin. J. Phys. Chem. B 117, 15386–15394 (2013)CrossRefGoogle Scholar
  23. 23.
    Bardez, E., Boutin, P., Valeur, B.: Photoinduced biprotonic transfer in 4-methylumbelliferone. Chem. Phys. Lett. 191, 142–148 (1992)CrossRefGoogle Scholar
  24. 24.
    Abu-Eitta, R.H., El-Tawil, B.A.H.: The γ-alkylation of cyclic β-ketoesters via their enamine derivatives. Can. J. Chem. 63, 1173–1883 (1985)CrossRefGoogle Scholar
  25. 25.
    Seixas de Melo, J., Fernandes, P.F.: Spectroscopy and photophysics of 4- and 7-hydroxycoumarins and their thione analogs, J. Mol. Struct. 565566, 69–78 (2001)CrossRefGoogle Scholar
  26. 26.
    Malin, U., Bo, D.: Chromophores: quantum chemical comparison of vertical, adiabatic, and 0–0 excitation energies: the PYP and GFP. J. Comput. Chem. 33, 1892–1901 (2012)CrossRefGoogle Scholar
  27. 27.
    Yufang, L., Dapeng, Y.: Excited-state hydrogen bonding and deprotonation of esculetin in solution: a DFT/TDDFT study. Spectrochim. Acta A 79, 213–218 (2011)CrossRefGoogle Scholar
  28. 28.
    Nuttawisit, Y., Khajadpai, T., Vithaya, R.: Exploring molecular structures, orbital interactions, intramolecular proton-transfer reaction kinetics, electronic transitions and complexation of 3-hydroxycoumarin species using DFT methods. J. Mol. Graph. Model. 51, 13–26 (2014)CrossRefGoogle Scholar
  29. 29.
    Georgieva, I., Trendafilova, N., Aquino, A., Lischka, H.: Excited state properties of 7-hydroxy-4-methylcoumarin in the gas phase and in solution. A theoretical study. J. Phys. Chem. A 109, 11860–11869 (2005)CrossRefGoogle Scholar
  30. 30.
    Ivelina, G., Natasha, T.F.: Excited-state proton transfer in 7-hydroxy-4-methylcoumarin along a hydrogen-bonded water wire. J. Phys. Chem. A 111, 127–135 (2007)CrossRefGoogle Scholar
  31. 31.
    Lanterna, A.E., González-Béjar, M., Frenette, M., Scaiano, J.C.: Photophysics of 7-mercapto-4-methylcoumarin and derivatives: complementary fluorescence behavior to 7-hydroxycoumarins. Photochem. Photobiolol. Sci. (2017).  https://doi.org/10.1039/c7pp00121e CrossRefGoogle Scholar
  32. 32.
    Gonzalez-Bejar, M., Frenette, M., Jorge, L., Scaiano, J.C.: 7-Mercapto-4-methylcoumarin as a reporter of thiol binding to the CdSe quantum dot surface. Chem. Commun. 22, 3202–3204 (2009)CrossRefGoogle Scholar
  33. 33.
    Dübner, M., Gevrek, T.N., Sanyal, A., Spencer, N.D., Padeste, C.: Fabrication of thiol–ene “clickable” copolymer-brush nanostructures on polymeric substrates via extreme ultraviolet interference lithography. ACS Appl. Mater. Interfaces 7, 11337–11345 (2015)CrossRefGoogle Scholar
  34. 34.
    Spartan’16: Parallel, Wavefunction Inc., USAGoogle Scholar
  35. 35.
    Lin, C.Y., George, M.W., Gil, P.M.W.: A density functional for predicting molecular vibrational frequencies. Aust. J. Chem. 57, 365–370 (2004)CrossRefGoogle Scholar
  36. 36.
    Stewart, J.J.P.: Optimization of parameters for semiempirical methods. I. Method, J. Comput. Chem. 10, 209–220 (1989).  https://doi.org/10.1002/jcc.540100208 CrossRefGoogle Scholar
  37. 37.
    Stewart, J.J.P.: Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007).  https://doi.org/10.1007/s00894-007-0233-4 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Chung, L.W., Sameera, W.M.C., Ramozzi, R., Page, A.J., Hatanaka, M., Petrova, G.P., Harris, T.V., Li, X., Ke, Z., Liu, F., Li, H., Ding, L., Morokuma, K.: The ONIOM method and its applications. Chem. Rev. 115, 5678–5796 (2015)CrossRefGoogle Scholar
  39. 39.
    Dapprich, S., Komáromi, I., Byun, K.S., Morokuma, K., Frisch, M.J.: A new ONIOM implementation in Gaussian 98. 1. The calculation of energies, gradients and vibrational frequencies and electric field derivatives. J. Mol. Struct. (THEOCHEM) 462, 1–21 (1999).  https://doi.org/10.1016/S0166-1280(98)00475-8 CrossRefGoogle Scholar
  40. 40.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 16. Gaussian Inc., Wallingford (2017)Google Scholar
  41. 41.
    Austin, A., Petersson, G., Frisch, M.J., Dobek, F.J., Scalmani, G., Throssell, K.: A density functional with spherical atom dispersion terms. J. Chem. Theory Comput. 8, 4989–5007 (2012).  https://doi.org/10.1021/ct300778e CrossRefGoogle Scholar
  42. 42.
    Vreven, T., Mennucci, B., da Silva, C.O., Morokuma, K., Tomasi, J.: The ONIOM-PCM method: combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution. J. Chem. Phys. 115, 62–72 (2001).  https://doi.org/10.1063/1.1376127 CrossRefGoogle Scholar
  43. 43.
    Fleming, I.: Frontier Orbitals and Organic Chemical Reactions. Wiley, New York (1976)Google Scholar
  44. 44.
    Parr, R.G., von Szentpaly, L., Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
  45. 45.
    Domingo, L.R., Chamorro, E., Pérez, P.: Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J. Org. Chem. 73, 4615–4624 (2008)CrossRefGoogle Scholar
  46. 46.
    Domingo, L.R.: A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 4, 32415–32428 (2014)CrossRefGoogle Scholar
  47. 47.
    Domingo, L.R.: Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 21, 1319 (2016)CrossRefGoogle Scholar
  48. 48.
    Zielinski, F., Tognetti, V., Joubert, L.: Condensed descriptors for reactivity: a methodological study. Chem. Phys. Lett. 527, 67–72 (2012)CrossRefGoogle Scholar
  49. 49.
    Murray, J.S., Sen, K.: Molecular Electrostatic Potentials, Concepts and Applications. Elsevier, Amsterdam (1996)Google Scholar
  50. 50.
    Politzer, P., Murray, J.S.: The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 108(3), 134–142 (2002)CrossRefGoogle Scholar
  51. 51.
    Murray, J., Politzer, P.: The electrostatic potential: an overview. WIREs Comput. Mol. Sci. 1, 153–163 (2011)CrossRefGoogle Scholar
  52. 52.
    Foresman, J.B., Frisch, A.: Exploring Chemistry with Electronic Structure Methods, 3rd edn., Gaussian, Inc., Wallingford, ISBN: 978-1-935522-03-4 (2015)Google Scholar
  53. 53.
    Liu, M., Chen, A., Wang, Y., Wang, C., Wang, B., Sun, D.: Improved solubility and stability of 7-hydroxy-4-methylcoumarin at different temperatures and pH values through complexation with sulfobutyl ether-b-cyclodextrin. Food Chem. 168, 270–275 (2015)CrossRefGoogle Scholar
  54. 54.
    Hoshiyama, M., Kubo, K., Igarashi, T., Sakurai, T.: Complexation and proton dissociation behavior of 7-hydroxy-4-methylcoumarin and related compounds in the presence of β-cyclodextrin. J. Photochem. Photobiol. A 138, 227–233 (2001)CrossRefGoogle Scholar
  55. 55.
    Maseras, F., Morokuma, K.: IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J. Comput. Chem. 16, 1170–1179 (1995)CrossRefGoogle Scholar
  56. 56.
    Svensson, M., Humbel, S., Froese, R.D.J., Matsubara, T., Sieber, S., Morokuma, K.: ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for diels—Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J. Phys. Chem. 100, 19357–19363 (1996)CrossRefGoogle Scholar
  57. 57.
    Dapprich, S., Komaromi, I., Byun, K.S., Morokuma, K., Frisch, M.J.: A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. (THEOCHEM) 462, 1–21 (1999)CrossRefGoogle Scholar
  58. 58.
    Nagaraju, M., Sastry, G.N.: Electrochemically grown mesoporous gold film as high surface area material for electro-oxidation of alcohol in alkaline medium. J. Phys. Chem. A 113, 9533–9542 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Nano-Photochemistry, Solarchemistry and Computational Chemistry Labs, Department of Chemistry, Faculty of ScienceAin Shams UniversityCairoEgypt
  2. 2.Department of Chemistry, Faculty of EducationAin Shams UniversityRoxyEgypt
  3. 3.Environmental Studies and Research InstituteUniversity of Sadat CitySadat CityEgypt

Personalised recommendations