Self-assembled (pseudo)rotaxane and polyrotaxane through host–guest chemistry based on the cucurbituril family

  • Zenghui Han
  • Qiongbo Zhou
  • Yaoji Li
Review Article


Cucurbit[n]uril and its derivatives, a new family of macrocyclic hosts comprising n glycoluril units, have gained much attention for their exceptional application in many fields. In this review, we introduced the cucurbituril family and the development of its derivatives, which can be used in the molecular recognition and self-assembled materials such as pseudorotaxane, polyrotaxane. Moreover, cucurbituril provides the possibility to design stimulus–response devices and imitate the life secret at molecule level, such as the molecular devices controlled by pH, photochemistry, thermal and so on.


Cucurbit[n]uril family Host–guest chemistry Self-assembled (pseudo)rotaxane 



We acknowledge the finance support of the Key Technology Integration and Demonstration Project for Mining and Flotation of Collophanite (2014HA004). Thanks Prof. Zhou Xiaohai (Wuhan University) and Prof. Zhang Haibo (Wuhan University).


  1. 1.
    Lehn, J.M.: Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 27, 89–112 (1988)CrossRefGoogle Scholar
  2. 2.
    Cram, D.J.: The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. 27, 1009–1020 (1988)CrossRefGoogle Scholar
  3. 3.
    Pedersen, C.J.: The discovery of crown ethers (Noble lecture). Angew. Chem. Int. Ed. 27, 1021–1027 (1988)CrossRefGoogle Scholar
  4. 4.
    Cram, D.J.: Preorganization—from solvents to spherands. Angew. Chem. Int. Ed. 25, 1039–1057 (1986)CrossRefGoogle Scholar
  5. 5.
    Sheng, J.C.: Supramolecular layered structure—assembly and function. Beijing Science Press, (2004)Google Scholar
  6. 6.
    Zhang, X., Sheng, J.C.: Supramolecular science: a new understanding of the material world. Chin. Sci. Bull. 48, 1477–1478 (2003)Google Scholar
  7. 7.
    Sheng, J.C., Sun, J.Q.: Progress in supramolecular scientific research. Bull. Chin. Acad. Sci. 19, 420–424 (2005)Google Scholar
  8. 8.
    Eikelder, H.M.M.T., Markvoort, A.J., Greef, T.F.A.D., Hilbers, P.A.J.: An equilibrium model for chiral amplification in supramolecular polymers. J. Phys. Chem. B 116, 5291–5301 (2012)CrossRefGoogle Scholar
  9. 9.
    Hart-Cooper, W.M., Clary, K.N., Toste, F.D.: Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. J. Am. Chem. Soc. 134, 17873–17876 (2012)CrossRefGoogle Scholar
  10. 10.
    Albelda, M.T., Frías, J.C., García-España, E.: Supramolecular complexation for environmental control. Chem. Soc. Rev. 41, 3859–3877 (2012)CrossRefGoogle Scholar
  11. 11.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  12. 12.
    Behrend, R., Meyer, E., Rusche, F.I.: Ueber condensationsproducte aus glycoluril und formaldehyd. Justus Liebigs Ann. Chem. 339, 1–37 (1905)CrossRefGoogle Scholar
  13. 13.
    Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)CrossRefGoogle Scholar
  14. 14.
    Kim, J., Jung, I.S., Kim, S.Y.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)CrossRefGoogle Scholar
  15. 15.
    Day, A., Arnold, A.P., Blanch, R.J.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)CrossRefGoogle Scholar
  16. 16.
    Liu, J.X., Lin, R.L., Long, L.S.: A novel inclusion complex form between Q[10] host and Q[5] guest stabilized by potassium ion coordination. Inorg. Chem. Commun. 11, 1085–1087 (2008)CrossRefGoogle Scholar
  17. 17.
    Liu, S., Zavalij, P.Y., Isaacs, L.: Cucurbit[10]uril. J. Am. Chem. Soc. 127, 16798–16799 (2005)CrossRefGoogle Scholar
  18. 18.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The Cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  19. 19.
    Flinn, A., Hough, G.C., Stoddart, J.F.: Decamethylcucurbit[5]uril. Angew. Chem. Int. Ed. 31, 1475–1477 (1992)CrossRefGoogle Scholar
  20. 20.
    Jansen, K., Buschmann, H.J., Wego, A.: Cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril. Synthesis, solubility and amine complex formation. J. Incl. Phenom. Macro. 39, 357–363 (2001)CrossRefGoogle Scholar
  21. 21.
    Buschmann, H.J., Cleve, E., Jansen, K.: Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution. Anal. Chim. Acta 437, 157–163 (2001)CrossRefGoogle Scholar
  22. 22.
    Miyahara, Y., Abe, K., Inazu, T.: “Molecular” molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. Angew. Chem. Int. Ed. 41, 3020–3023 (2002)CrossRefGoogle Scholar
  23. 23.
    Zhou, Q.B., Sun, X.Z., Zhang, H.B.: Water clusters: through which water capsules were connected to form supramolecular chains. J. Clust. Sci. 24, 969–977 (2013)CrossRefGoogle Scholar
  24. 24.
    Liu, J.X., Long, L.S., Huang, R.B.: Interesting anion-inclusion behavior of Cucurbit[5]uril and its lanthanide-capped molecular capsule. Inorg. Chem. 46, 10168–10173 (2007)CrossRefGoogle Scholar
  25. 25.
    Liu, J.X., Long, L.S., Huang, R.B.: Molecular capsules based on cucurbit[5]uril encapsulating “naked” anion chlorine. Cryst. Growth Des. 6, 2611–2614 (2006)CrossRefGoogle Scholar
  26. 26.
    Zhao, J., Kim, H.J., Oh, J.: Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem. 113, 4363–4365 (2001)CrossRefGoogle Scholar
  27. 27.
    Isobe, H., Sato, S., Nakamura, E.: Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative. Org. Lett. 4, 1287–1289 (2002)CrossRefGoogle Scholar
  28. 28.
    Jon, S.Y., Selvapalam, N., Oh, D.H.: Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 125, 10186–10187 (2003)CrossRefGoogle Scholar
  29. 29.
    Lee, H.K., Park, K.M., Jeon, Y.J., Kim, D., Dong, H.O., Kim, H.S.: Vesicle formed by amphiphilc cucurbit[6]uril: versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin. J. Am. Chem. Soc. 127, 5006–5007 (2005)CrossRefGoogle Scholar
  30. 30.
    Miyahara, Y., Goto, K., Oka, M.: Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. Angew. Chem. Int. Ed. 43, 5019–5022 (2004)CrossRefGoogle Scholar
  31. 31.
    Isaacs, L., Park, S.K., Liu, S.: The inverted cucurbit[n]uril family. J. Am. Chem. Soc. 127, 18000–18001 (2005)CrossRefGoogle Scholar
  32. 32.
    Svec, J., Necas, M., Sindelar, V.: Bambus[6]uril. Angew. Chem. 122, 2428–2431 (2010)CrossRefGoogle Scholar
  33. 33.
    Cheng, X.J., Liang, L.L., Chen, K., Ji, N.N., Xiao, X., Zhang, J.X., Zhang, Y.Q., Xue, S.F., Zhu, Q.J., Ni, X.L., Tao, Z: Twisted cucurbit[14]uril. Angew. Chem. 125, 7393–7396 (2013)CrossRefGoogle Scholar
  34. 34.
    Wittenberg, J.B., Costales, M.G., Zavalij, P.Y., Isaacs, L.: A clipped [3]rotaxane derived from bis-nor-seco-cucurbit[10]uril. Chem. Commun. 47, 9420–9422 (2011)CrossRefGoogle Scholar
  35. 35.
    Huang, W.H., Liu, S., Zavalij, P.Y.: Nor-seco-cucurbit[10]uril exhibits homotropic allosterism. J. Am. Chem. Soc. 128, 14744–14745 (2006)CrossRefGoogle Scholar
  36. 36.
    Yao, Y.Q., Chen, K., Hua, Z.Y., Zhu, Q.J., Xue, S.F., Tao, Z.: Cucurbit[n]uril-based host-guest-metal ion chemistry: an emerging branch in cucurbit[n]uril chemistry. J. Incl. Phenom. Macro. 89, 1–14 (2017)CrossRefGoogle Scholar
  37. 37.
    Buschmann, H.J., Cleve, E., Schollmeyer, E.: Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorg. Chim. Acta. 193, 93–97 (1992)CrossRefGoogle Scholar
  38. 38.
    Buschmann, H.J., Cleve, E., Mutihac, L.: The formation of alkali and alkaline earth cation complexes with cucurbit[6]uril in aqueous solution: a critical survey of old and new results. J. Incl. Phenom. Macro. 65, 293–297 (2009)CrossRefGoogle Scholar
  39. 39.
    Jeon, Y.M., Kim, J., Whang, D.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996)CrossRefGoogle Scholar
  40. 40.
    Jeon, Y.J., Kim, H., Jon, S.: Artificial ion channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. J. Am. Chem. Soc. 126, 15944–15945 (2004)CrossRefGoogle Scholar
  41. 41.
    Buschmann, H.J., Jansen, K., Schollmeyer, E.: Cucurbit[6]uril as ligand for the complexation of lanthanide cations in aqueous solution. Inorg. Chem. Commun. 6, 531–534 (2003)CrossRefGoogle Scholar
  42. 42.
    Dietrich, B., Viout, P., Lehn, J.M.: Macrocyclic chemistry: aspects of organic and inorganic supramolecular chemistry. Acta Crystallogr. B 49, 1074 (1993)Google Scholar
  43. 43.
    Lehn, J.M.: From molecular to supramolecular chemistry. Wiley. KGaA, (1995)Google Scholar
  44. 44.
    Liu, J.X., Long, L.S., Huang, R.B., Zheng, L.S.: Interesting anion-inclusion behavior of Cucurbit[5]uril and its lanthanide-capped molecular capsule. Inorg. Chem. 46, 10168–10173 (2007)CrossRefGoogle Scholar
  45. 45.
    Kellersberger, K.A., Anderson, J.D., Ward, S.M., Krakowiak, E.K., Dearden, D.V.: Encapsulation of N2, O2, methanol, or acetonitrile by decamethylcucurbit[5]uril(NH4 +)2 complexes in the gas phase: influence of the guest on “lid” tightness. J. Am. Chem. Soc. 123, 11316–11317 (2001)CrossRefGoogle Scholar
  46. 46.
    Freeman, W.A.: Structures of the para-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand cucurbituril, C36H36N24O12. Acta Crystallogr. B 40, 382–387 (1984)CrossRefGoogle Scholar
  47. 47.
    Mock, W.L., Shih, N.Y.: Host-guest binding capacity of cucurbituril. J. Org. Chem. 48, 3618–3619 (1983)CrossRefGoogle Scholar
  48. 48.
    Gerasko, O.A., Samsonenko, D.G., Fedin, V.P.: Supramolecular chemistry of cucurbiturils. Russ. Chem. Rev. 71(9), 741–760 (2002)CrossRefGoogle Scholar
  49. 49.
    Mohanty, J., Nau, W.M.: Ultrastable rhodamine with cucurbituril. Angew. Chem. 117, 3816–3820 (2005)CrossRefGoogle Scholar
  50. 50.
    Hou, Z., Tan, Y., Zhou, Q.: Side-chain pseudopolyrotaxanes by threading cucurbituril[6] onto quaternized poly-4-vinylpyridine derivative: synthesis and properties. Polymer 47, 5267–5274 (2006)CrossRefGoogle Scholar
  51. 51.
    Yang, H., Tan, Y., Hao, J., Yang, H., Liu, F.: Side-chain polypseudorotaxanes by threading cucurbit[7]uril onto poly-N-n-butyl-N′-(4-vinylbenzyl)-4,4′-bipyridinium bromide chloride: synthesis, characterization, and properties. J. Poly. Sci. 48, 2135–2142 (2010)CrossRefGoogle Scholar
  52. 52.
    Lee, J.W., Ko, Y.H., Park, S.H., Yamaguchi, K., Kim, K.: Novel pseudorotaxane-terminated dendrimers: supramolecular modification of dendrimer periphery. Angew. Chem. Int. Ed. 40, 746–749 (2001)CrossRefGoogle Scholar
  53. 53.
    Liu, Y., Huang, Z., Tan, X., Wang, Z., Zhang, X: Cucurbit[8]uril-based supramolecular polymers: promoting supramolecular polymerization by metal-coordination. Chem. Commun. 49, 5766–5768 (2013)CrossRefGoogle Scholar
  54. 54.
    Ramalingam, V., Urbach, A.R.: Cucurbit[8]uril rotaxanes. Org. Lett. 13, 4898–4901 (2011)CrossRefGoogle Scholar
  55. 55.
    Li, Y., Dong, Y., Miao, X., Ren, Y., Zhang, B., Wang, P., Yu, Y., Li, B., Isaacs, L., Cao, L.: Shape-controllable and fluorescent supramolecular organic frameworks through aqueous host–guest complexation. Angew. Chem. 57(3), 729–733 (2017)CrossRefGoogle Scholar
  56. 56.
    Zhou, Q.B., Li, Y.J., Han, Z.H., Gong, L., Chen, J.X., Zhang, H., Xia, J.Y., Peng, H., Fang, S.X., He, B.B., Yang, W.Q., Liu, L.F., Shen, Q., Zong, S.R., Zhang, H.B., Zhou, X.H., Hu, Y.H., Sun, W.: A novel two-dimensional polyrotaxane network self-assembled by heterowheel [4]pseudorotaxane. Supramol. Chem. 29(3), 176–182 (2016)CrossRefGoogle Scholar
  57. 57.
    Song, Y.F., Huang, X.H., Hua, H.J., Wang, Q.C.: The synthesis of a rigid conjugated viologen and its cucurbituril pseudorotaxanes. Dyes Pigm. 137, 229–235 (2017)CrossRefGoogle Scholar
  58. 58.
    Reany, O., Li, A., Yefet, M., Gilson, M.K., Keinan, E.: Attractive interactions between heteroallenes and the cucurbituril portal. J. Am. Chem. Soc. 139, 8138–8145 (2017)CrossRefGoogle Scholar
  59. 59.
    Wu, X.S., Wang, X.L., Zhu, F.L., Bao, H.F., Qin, C., Su, Z.M.: Guest exchange in porous cucurbit[6]uril-based metal–organic rotaxane framework probed by NMR and X-ray crystallography. Chem. Commun. 54, 5474–5477 (2018)CrossRefGoogle Scholar
  60. 60.
    Senler, S., Cheng, B., Kaifer, A.E.: Rotaxane formation by Cucurbit[7]uril in water and DMSO solutions. Org. Lett. 16, 5834–5837 (2014)CrossRefGoogle Scholar
  61. 61.
    Ulfkjær, A., Nielsen, F.W., Al-Kerdi, H., Ru, T., Nielsen, Z.K., Ulstrup, J., Sun, L., Moth-Poulsen, K., Zhang, J., Pittelkow, M.: A gold-nanoparticle stoppered [2]rotaxane. Nanoscale 10, 9133–9140 (2018)CrossRefGoogle Scholar
  62. 62.
    Finbloom, J.A., Han, K., Slack, C.C., Furst, A.L., Francis, M.B.: Cucurbit[6]uril-promoted click chemistry for protein modification. J. Am. Chem. Soc. 139, 9691–9697 (2017)CrossRefGoogle Scholar
  63. 63.
    Liu, Y., Ke, C.F., Zhang, H.Y.: Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. J. Org. Chem. 72, 280–283 (2007)CrossRefGoogle Scholar
  64. 64.
    Sun., H., Zhang, H.Y., Dai., Z., Han., X., Liu, Y.: New insights into the difference between rotaxane and pseudorotaxane. Chemistry 12(2), 265–270 (2016)Google Scholar
  65. 65.
    Liu, J.X., Hu, Y.F., Lin, R.L.: Anion channel structure through packing of cucurbit[5]uril-Pb2+ or cucurbit[5]uril-Hg2+ complexes. J. Coord. Chem. 63, 1369–1378 (2010)CrossRefGoogle Scholar
  66. 66.
    Liu, J.X., Dong, C.H., Long, L.S.: From 1D zigzag chain to 1D tubular structure, weak field ligand-dependent assembly of cucurbit[6]uril-based tubular coordination polymer. Dalton Trans. 36, 7344–7346 (2009)CrossRefGoogle Scholar
  67. 67.
    Kim, K.: Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002)CrossRefGoogle Scholar
  68. 68.
    Wei, M.J., Zang, H.Y., Zhou, E.L., Shao, K.Z., Song, B.Q., Wang, X.L., Su, Z.M.: Coordination and supramolecular assembly of {Cd2Ge8V12O48} building block and Cucurbit[6] to form rotaxane-shaped hybrids. Dalton Trans. 45, 4989–4992 (2016)CrossRefGoogle Scholar
  69. 69.
    Mei, L., Xie, Z.N., Hu, K.Q., Yuan, L.Y., Gao, Z.Q., Chai, Z.F., Shi, W.Q.: Supramolecular host-guest inclusion for distinguishing Cucurbit[7]uril-based pseudorotaxanes from small-molecule ligands in coordination assembly with uranyl center. Chemistry 23, 13995–14003 (2017)CrossRefGoogle Scholar
  70. 70.
    Ge, Y.C., Mei, L., Xie, Z.N., Hu, K.Q., Xia, C.Q., Wang, X.L., Chai, Z.F., Shi, W.Q.: Supramolecular isomers of coordination-directed side-chain polypseudorotaxanes based on trimeric uranyl oxalate nodes. Chem. Eur. J. 23, 8380–8384 (2017)CrossRefGoogle Scholar
  71. 71.
    Kim, K., Kim, D., Lee, J.W., Ko, Y.H., Kim, K.: Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. Chem. Commun. 10, 848–849 (2004)Google Scholar
  72. 72.
    Yang, H., An, Q., Zhu, W., Li, W., Jiang, Y., Cui, J., Zhang, X., Li, G.: A new strategy for effective construction of protein stacks by using cucurbit[8]uril as a glue molecule. Chem. Commun. 48, 10633–10635 (2012)CrossRefGoogle Scholar
  73. 73.
    Li, D., Ren, K., Chang, H.: Cucurbit[8]uril supramolecular assembly for positively charged ultrathin films as nanocontainers. Langmuir 29, 14101–14107 (2013)CrossRefGoogle Scholar
  74. 74.
    Buyukcakir, O., Yasar, F.T., Bozdemir,O.A., Icli, B., Akkaya, E.U.: Autonomous shuttling driven by an oscillating reaction: proof of principle in a cucurbit[7]uril-bodipy pseudorotaxane. Org. Lett. 15, 1012–1015 (2013)CrossRefGoogle Scholar
  75. 75.
    Liu, J., Du, X.: pH and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. J. Mater. Chem. 20, 3642–3649 (2010)CrossRefGoogle Scholar
  76. 76.
    Yang, Q., Lv, J., Li, P.Y.: A pH-responsive self-healing gel with crosslinking of cucurbituril (CB[n]) via hydrogen bonding. Chem. Lett. 47(2), 192–195 (2018)CrossRefGoogle Scholar
  77. 77.
    Li, J.X., Si, C.Y., Sun, H.C., Zhu, J.Y., Pan, T.Z., Liu, S.D., Dong, Z.Y., Xu, J.Y., Luo, Q., Liu, J.Q.: Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation. Chem. Comm. 51(49), 9987–9990 (2015)CrossRefGoogle Scholar
  78. 78.
    Freitag, M., Gundlach, L., Piotrowiak, P., Galoppini, E.: Fluorescence enhancement of di-p-tolyl viologen by complexation in cucurbit[7]uril. J. Am. Chem. Soc. 134, 3358–3366 (2012)CrossRefGoogle Scholar
  79. 79.
    Mohanty, J., Thakur, N., Choudhury, S.D., Barooah, N., Pal, H., Bhasikuttan, A.C.: Recognition-mediated light-up of thiazole orange with cucurbit[8]uril: exchange and release by chemical stimuli. J. Phys. Chem. B 116, 130–135 (2011)CrossRefGoogle Scholar
  80. 80.
    Yu, Y., Li, Y.W., Wang, X.Q., Nian, H., Wang, L., Li, J., Zhao, Y.X., Yang, X., Liu, S.M., Cao, L.P.: Cucurbit[10]uril-based [2]Rotaxane: preparation and supramolecular assembly-induced fluorescence enhancement. J. Org. Chem. 82, 5590–5596 (2017)CrossRefGoogle Scholar
  81. 81.
    Croissant, J., Zink, J.I.: Nanovalve-controlled cargo release activated by plasmonic heating. J. Am. Chem. Soc. 134, 7628–7631 (2012)CrossRefGoogle Scholar
  82. 82.
    Lee, J.W., Choi, S., Ko, Y.H., Kim, S.Y., Kim, K.I.: Novel [2]pseudorotaxanes containing cucurbituril as a molecular bead: unexpected formation of a kinetic product which spontaneously converts into a thermodynamic product by translocation of the bead. Bull. Korean Chem. Soc. 23, 1347–1350 (2002)CrossRefGoogle Scholar
  83. 83.
    Liu, Y., Li, X.Y., Zhang, H.Y.: Cyclodextrin-driven movement of cucurbit[7]uril. J. Org. Chem. 72, 3640–3645 (2007)CrossRefGoogle Scholar
  84. 84.
    Ding, Z.J., Zhang, H.Y., Wang, L.H., Ding, F., Liu, Y.: A heterowheel [3]pseudorotaxane by integrating β-cyclodextrin and cucurbit[8]uril inclusion complexes. Org. Lett. 13, 856–859 (2011)CrossRefGoogle Scholar
  85. 85.
    Finbloom, J.A., Slack, C.C., Bruns, C.J., Jeong, K., Wemmer, D.E., Pines, A., Francis, M.B.: Rotaxane-mediated suppression and activation of cucurbit[6]uril for molecular detection by 129Xe hyperCEST NMR. Chem. Commun. 52(15), 3119–3122 (2016)CrossRefGoogle Scholar
  86. 86.
    Hu, C., Zheng, Y., Yu, Z.Y., Abell, C., Scherman, O.A.: Surface-immobilised micelles via cucurbit[8]uril-rotaxanes for solvent-induced burst release. Chem. Commun. 51, 4858–4860 (2015)CrossRefGoogle Scholar
  87. 87.
    Hu, C., Tian, F., Zheng, Y., Tan, C.S.Y., West, K.R., Scherman, O.A.: Cucurbit[8]uril directed stimuli-responsive supramolecular polymer brushes for dynamic surface engineering. Chem. Sci. 6, 5303–5310 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Yuxi Normal UniversityYuxiChina
  2. 2.Yunnan Phosphate Chemical Group Co., LTDKunmingChina

Personalised recommendations